量子技術市場は、年平均成長率25%、2034年までに20億ドルを超える規模に

量子技術市場 2024-2034年:トレンド、有力企業、予測

量子コンピューティング市場、量子センシング市場、量子通信市場における技術、応用、トレンド、機会の包括的概観、および量子材料開発の全体的なトレンド


製品情報 概要 目次 価格 Related Content
本レポートでは、量子技術市場の全体的特徴、主なトレンド特定、主な有力企業概要を解説しています。量子コンピューティング、量子センシング、量子通信という3つの主要分野を取り上げ、50を超える企業概要に基づく2024年から2034年までの市場予測を掲載しています。今後10年のうちに年平均成長率25%のペースで成長が見込まれる量子技術市場の急速に変化する複雑かつ興味深い業界をわかりやすく説明し、著しい成長機会を明らかにします。25年以上にわたり先進技術市場を取り上げてきたIDTechExが、自動車業界、半導体業界、フォトニクス業界、先端材料業界、センサー技術業界のトレンドと量子技術市場の関連性という独自視点で市場を分析します。
「量子技術市場 2024-2034年」が対象とする主なコンテンツ
(詳細は目次のページでご確認ください)
● 全体概要および結論
● はじめに
● 量子コンピューティング
● 量子センシング
● 量子通信
● 量子技術で使用される材料
● 市場予測
● 50社を超える企業概要
 
「量子技術市場 2024-2034年」は以下の情報を提供します
本レポートは、量子技術市場全体を対象に重要なマーケット・インテリジェンスを提供します。量子コンピューティング、量子センシング、量子通信の主要技術を詳しく解説し、各技術の応用、有力企業、市場トレンドを解説します。
量子技術市場の現状と背景レビュー
  • 2024年の量子技術市場を取り巻く状況の概要
  • 量子コンピューティング、量子センシング、量子通信のハードウェア市場の今後10年間の年間売上高予測
  • 主な国家量子戦略概要と政府による投資の取り組み比較
  • 量子技術市場における50社を超える有力企業概要
量子技術市場の主要技術と応用に関する市場の特徴
  • 量子技術市場での材料の機会の概要
  • 量子コンピューティングの商業化に向けた主要8手法詳細分析:超電導(ゲート型およびアニーリング型)、イオントラップ、中性原子、シリコンスピン、フォトニック、ダイヤモンド結晶欠陥、トポロジカル
  • 量子コンピューティングの重要ベンチマーク詳細、主なモダリティ別民間有力企業の達成状況とロードマップ比較
  • 量子センシングの主要市場概要:測位・航法・タイミング(PNT)、医用生体画像、リモート電流検出など
  • チップスケール原子時計、量子ジャイロスコープ、量子磁場センサー、量子重力計などの商業化実現の技術的手法
  • 量子通信のデータ セキュリティ強化のソフトウェア手法とハードウェア手法比較:ポスト量子暗号(PQC)、量子鍵配送(QKD)など
  • 市場内の各技術分野のSWOT分析、各セクターロードマップ
 
This report characterizes the entire quantum technology market, identifies key trends, and provides an overview of the major players. Coverage across three key sectors including quantum computing, quantum sensing, and quantum communications is included, alongside market forecasts from 2024 to 2034 and over 50 company profiles. This comprehensive study provides clarity on the complexities of this rich and fast-moving industry, revealing significant opportunity, with the quantum technology market forecast to grow at a CAGR of 25% in the next ten years. IDTechEx has over 25 years of experience covering emerging technology markets, and is uniquely placed to analyze the interplay of related trends in the automotive, semiconductor, photonics, advanced materials, and sensor technology industries with the quantum technology market.
 
The quantum technology market leverages nano-scale physics to create revolutionary new devices for computing, sensing and communications. Across the industry, quantum technology offers a paradigm shift in performance compared with incumbent solutions.
 
 
Source: IDTechEx
 
Quantum computing is being developed in a range of hardware platforms including superconducting, trapped-ion, neutral atom, silicon-spin, photonic, diamond and more. Competition is building between start-ups and established computer manufacturers alike to demonstrate a quantum advantage in computational speed up through the use of qubits in place of classical bits. Quantum computing is just beginning to be adopted to solve industry scale optimization and logistics problems - but holds promise of going much further. In particular, future applications within simulation are anticipated to hugely accelerate drug discovery and the search for more sustainable energy alternatives. The quantum space race is underway, with governments worldwide anxious to capture the value and security becoming a world leader in quantum computing would offer.
 
In many ways, the platforms developed for quantum computing have origins in development for quantum sensing. The sensitivity of quantum states to environmental noise - which is such a challenge in computing - can be harnessed in sensing for highly sensitive measurements of time, magnetic field, current, gravity, light and movement. As such, quantum sensors have applications as atomic clocks, magnetometers, photo-detectors, gravimeters, accelerometers gyroscopes and more. However, the market demands in the sensor market vary significantly from high performance computing - leading to a distinct set of opportunities and challenges. To compete with incumbent sensor technology, quantum sensors must not only offer a significant performance advantage but also be commercialized into a small, low power and cost-effective package. The manufacturing challenge has somewhat stalled the quantum sensor market in recent years, leading to a pivot in hype and private investment towards computing. However, as the need for quantum foundries and component manufacture becomes a clearer necessity for quantum computing the opportunities for quantum sensing is seeing something of a revival. Moreover, the quantum sensor market has the long-term potential to have huge impact in high-volume industries such as automotive and consumer electronics.
 
Quantum communications technology seeks to improve data security, which is increasingly compromised in the modern world. The world is generating higher and higher volumes of data, with increasing concerns about its sensitivity. Meanwhile, bad actors are committing more advanced cybercrimes - keen to exploit the value of virtually shared trade secrets, financial data, health records and more. Moreover, the scaling up of quantum computing threatens to undermine existing cryptography methods entirely, leaving a gap in the market for new 'quantum-ready' technology solutions able to meet the next generation of encryption needs.
 
The technology differentials within the entire quantum technology market can be complex to understand, and in many instances, stakeholders are lacking clarity as to the nature and scale of the opportunities on offer in this emerging market. As such, this report provides a clear and simplified breakdown of the technological fundamentals, summarized in multiple SWOT analysis, roadmaps, benchmarking tables and bespoke graphics. A comprehensive summary of key players in the quantum technology eco-system is also provided, with multiple write-ups from primary interviews included. The application specific focused sections of this report also enable specific comparisons to be drawn between the quantum solutions emerging from research, with the classical competition they face in real-world markets.
Key aspects
This report provides critical market intelligence covering the entire quantum technology market. This includes detailed coverage of key technologies for quantum computing, quantum sensing, and quantum communications, as well as applications, players, and market trends. The report includes:
 
A review of the context and background of the quantum technology market
  • Overview of the quantum technology market landscape in 2024.
  • Ten-year market forecasts by annual revenue within quantum computing, quantum sensing, and quantum communications hardware markets.
  • Overview of key national quantum strategies, and comparison of government funding commitments.
  • Over 50 company profiles of key players in the quantum technology market.
 
 
Full market characterization of major technologies and applications within the quantum technology market
  • Summary of material opportunities within the quantum technology market.
  • Breakdown of eight major approaches to commercializing quantum computing including superconducting (gate-based and annealing), trapped-ion, neutral atom, silicon-spin, photonic, diamond, and topological.
  • Details of critical benchmarks for quantum computing and comparison of achievements and roadmaps across key modalities and commercial players.
  • Overview of key markets for quantum sensing including precision navigation and timing, biomedical imaging, and remote current sensing.
  • Coverage of technology approaches to commercializing chip-scale atomic clocks, quantum gyroscopes, quantum magnetic field sensors, quantum gravimeters, and more.
  • Comparison of software and hardware approaches to quantum communications for enhanced data security, including post-quantum cryptography (PQC) and quantum key distribution (QKD)
  • SWOT analysis of each technology area within the market, and roadmaps for each sector.
Report MetricsDetails
CAGR25%
Forecast Period2024 - 2034
Forecast UnitsAnnual Revenue (USD)
IDTechEx のアナリストへのアクセス
すべてのレポート購入者には、専門のアナリストによる最大30分の電話相談が含まれています。 レポートで得られた重要な知見をお客様のビジネス課題に結びつけるお手伝いをいたします。このサービスは、レポート購入後3ヶ月以内にご利用いただく必要があります。
詳細
この調査レポートに関してのご質問は、下記担当までご連絡ください。

アイディーテックエックス株式会社 (IDTechEx日本法人)
担当: 村越美和子 m.murakoshi@idtechex.com
Table of Contents
1.EXECUTIVE SUMMARY
1.1.Overview of the quantum technology market landscape
1.2.Quantum research breakthroughs have evolved from theoretical to application focused - creating commercialization opportunities
1.3.Segmenting the quantum technology ecosystem by function and value proposition: computing, sensing and communications
1.4.Quantum Technology Market Forecasts (Annual Revenue, USD Million)
1.5.Why now for quantum technologies?
1.6.Government funding in the US, China, and Europe is driving the commercializing of quantum technologies
1.7.Shortage of quantum talent is a challenge for the industry
1.8.Quantum and AI - ally or competitor?
1.9.Summary of Material Opportunities in Quantum Technology
1.10.The quantum computer market 'at a glance'
1.11.The race for quantum computing is an ultra-marathon not a sprint
1.12.Quantum Computing Market: Analyst Opinion
1.13.Quantum Computing: Main conclusions (I)
1.14.Quantum Computing: Main conclusions (II)
1.15.The quantum sensor market 'at a glance'
1.16.Quantum sensors: Analyst viewpoint
1.17.The quantum communication market 'at a glance'
1.18.The quantum threat to data security
1.19.Quantum communications: analyst viewpoint (1)
1.20.Quantum communications: analyst viewpoint (2)
2.INTRODUCTION
2.1.Overview of the quantum technology market landscape
2.2.Quantum research breakthroughs have evolved from theoretical to application focused - creating commercialization opportunities
2.3.Segmenting the quantum technology ecosystem by function and value proposition: computing, sensing and communications
2.4.Government funding is largely driving the commercialization of quantum technologies
2.5.USA National Quantum Initiative aims to accelerate research and economic development
2.6.The UK National Quantum Technologies Program
2.7.Eleven quantum technology innovation hubs now established in Japan
2.8.Quantum in South Korea: ambitions to become a global leader in the 2030s
2.9.Quantum in Australia: creating clear benchmarks of national quantum eco-system success
2.10.Collaboration versus quantum nationalism
2.11.Shortage of quantum talent is a challenge for the industry
2.12.Classical vs. Quantum
2.13.Superposition, entanglement, and observation
2.14.Quantum phenomena enable highly-sensitive quantum sensing
3.QUANTUM COMPUTING
3.1.Quantum Computing: Introduction
3.1.1.Quantum computing glossary
3.1.2.Introduction to quantum computers
3.2.Quantum Computing: Technologies
3.2.1.The number of companies commercializing quantum computers is growing
3.2.2.Blueprint for a quantum computer: qubits, initialization, readout, manipulation
3.2.3.Summarizing the promises and challenges of leading quantum hardware
3.2.4.Summarizing the promises and challenges of leading quantum hardware
3.2.5.Competing quantum computer architectures: Summary table
3.2.6.Hardware agnostic platforms for quantum computing represent a new market for established technologies
3.2.7.Four major challenges for quantum hardware
3.2.8.Comparing progress in logical qubit number scalability between key players/qubit modalities
3.2.9.Infrastructure Trends: Modular vs. Single Core
3.2.10.Introduction to superconducting qubits (I)
3.2.11.Comparing key players in superconducting quantum computing (hardware)
3.2.12.SWOT analysis: superconducting quantum computers
3.2.13.Key conclusions: superconducting quantum computers
3.2.14.Introduction to trapped-ion quantum computing
3.2.15.Comparing key players in trapped ion quantum computing (hardware)
3.2.16.SWOT analysis: trapped-ion quantum computers
3.2.17.Key conclusions: trapped ion quantum computers
3.2.18.Introduction to light-based qubits
3.2.19.Comparing key players in photonic quantum computing
3.2.20.SWOT analysis: photonic quantum computers
3.2.21.Key conclusions: photonic quantum computers
3.2.22.Introduction to silicon-spin qubits
3.2.23.Comparing key players in silicon spin quantum computing
3.2.24.SWOT analysis: silicon spin quantum computers
3.2.25.Key conclusions: silicon spin quantum computers
3.2.26.Introduction to neutral atom quantum computing
3.2.27.Comparing key players in neutral atom quantum computing (hardware)
3.2.28.SWOT analysis: neutral-atom quantum computers
3.2.29.Key conclusions: neutral atom quantum computers
3.2.30.Introduction to diamond-defect spin-based computing
3.2.31.Comparing key players in diamond defect quantum computing
3.2.32.SWOT analysis: diamond-defect quantum computers
3.2.33.Key conclusions: diamond-defect quantum computers
3.2.34.Confidence in the potential of topological quantum computing is rising
3.2.35.Introduction to quantum annealers
3.2.36.Comparing key players in quantum annealing
3.2.37.SWOT analysis: quantum annealers
3.2.38.Key conclusions: quantum annealers
3.2.39.Benchmarking Quantum Computers
3.2.40.Noise effects on qubits
3.2.41.Comparing coherence times
3.2.42.Qubit fidelity and error rate
3.2.43.Quantum supremacy and qubit number
3.2.44.Logical qubits and error correction
3.2.45.Introduction to quantum volume
3.2.46.Error rate and quantum volume
3.2.47.Square circuit tests for quantum volume
3.2.48.Critical appraisal of the importance of quantum volume
3.2.49.Algorithmic qubits: A new benchmarking metric?
3.2.50.Companies defining their own benchmarks
3.2.51.Operational speed and CLOPS (circuit layer operations per second)
3.2.52.Conclusions: determining what makes a good computer is hard, and a quantum computer even harder
3.2.53.The DiVincenzo criteria
3.2.54.IDTechEx - Quantum commercial readiness level (QCRL)
3.2.55.QCRL scale (1-5, commercial application focused)
3.2.56.QCRL scale (6-10, user-volume focused)
3.3.Quantum Computing: Applications
3.3.1.Summary of applications for quantum computing
3.3.2.Applications of quantum algorithms
3.3.3.Commercial examples of use-cases for quantum annealing
3.3.4.Value capture in quantum computing
3.3.5.Business Model Trends: Vertically Integrated vs. The Quantum 'Stack'
3.3.6.Overviewing early adopters of on-premises quantum computers
3.3.7.Partnerships forming now will shape the future of quantum computing for the financial sector
3.3.8.Most automotive players are pursuing quantum computing for battery chemistry
3.3.9.The automotive industry is yet to converge on a preferred qubit modality
4.QUANTUM SENSING
4.1.Quantum Sensing: Introduction
4.1.1.What are quantum sensors?
4.1.2.The quantum sensor market 'at a glance'
4.1.3.Quantum phenomena enable highly-sensitive quantum sensing
4.1.4.Key technology approaches to quantum sensing
4.1.5.Overview of quantum sensing technologies and applications
4.1.6.Quantum sensor industry market map
4.2.Quantum Sensing - Technologies: Atomic Clocks
4.2.1.Introduction to atomic clocks: High frequency oscillators for high accuracy clocks
4.2.2.Atomic clocks self-calibrate for clock drift
4.2.3.Chip Scale Atomic Clocks for portable precision time-keeping
4.2.4.Assured portable navigation and timing (PNT) is a key application for chip-scale atomic clocks
4.2.5.Comparing key players in atomic clock hardware development
4.2.6.Atomic Clocks: SWOT analysis
4.2.7.Atomic clocks: Conclusions and Outlook
4.3.Quantum Sensing - Technologies: Quantum Magnetic Field Sensors
4.3.1.Introduction to quantum magnetic field sensors
4.3.2.Classifying magnetic field sensor hardware
4.3.3.Operating principle of SQUIDs
4.3.4.Commercial applications and market opportunities for SQUIDs
4.3.5.SQUIDs: SWOT analysis
4.3.6.Operating principles of Optically Pumped Magnetometers (OPMs)
4.3.7.Applications of optically pumped magnetometers (OPMs) (1)
4.3.8.Comparing the technology approaches of key players developing miniaturized OPMs for healthcare
4.3.9.OPMs: SWOT analysis
4.3.10.Introduction to N-V center magnetic field sensors
4.3.11.Operating Principles of N-V Centers magnetic field sensors
4.3.12.Applications of N-V center magnetic field centers
4.3.13.Operating Principles of N-V Centers magnetic field sensors
4.3.14.Applications of N-V center magnetic field centers
4.3.15.Comparing key players in N-V center magnetic field sensor development
4.3.16.N-V Center Magnetic Field Sensors: SWOT analysis
4.3.17.Conclusions and Outlook: quantum magnetic field sensors
4.4.Quantum Sensing - Technologies: Quantum Gravimeters
4.4.1.Quantum gravimeters: Section overview
4.4.2.Operating principles of atomic interferometry-based quantum gravimeters
4.4.3.The main application for gravity sensors is for mapping utilities and buried assets
4.4.4.Comparing key players in quantum gravimeters
4.4.5.Quantum gravimeter development depends on collaboration between laser manufacturers, sensor OEMs and end-users
4.4.6.Quantum Gravimeters: SWOT analysis
4.4.7.Conclusions and outlook
4.5.Quantum Sensing - Technologies: Quantum Gyroscopes
4.5.1.Quantum gyroscopes: Chapter overview
4.5.2.Operating principles of atomic quantum gyroscopes
4.5.3.One key application for quantum gyroscopes is within small-satellite constellation navigation systems
4.5.4.Navigation in GNSS denied environments could be a key application for chip-scale quantum gyroscopes
4.5.5.Quantum gyroscope development depends on collaboration between laser manufacturers, sensor OEMs and end-users
4.5.6.Comparing key players in quantum gyroscopes
4.5.7.Quantum Gyroscopes: SWOT analysis
4.5.8.Conclusions and outlook
5.QUANTUM COMMUNICATIONS
5.1.Introduction
5.1.1.The quantum communication market 'at a glance'
5.1.2.Introduction to quantum communications
5.1.3.The quantum threat to data security
5.1.4.'Hack Now Decrypt Later' (HNDL) and preparing for Q-Day/ Y2Q
5.1.5.The quantum hardware solution to data security
5.2.Quantum Communications: Software (PQC)
5.2.1.Introduction to Post Quantum Cryptography (PQC)
5.2.2.Cybercrime incidents are rising in frequency and cost - driving engagement with PQC solutions
5.2.3.Cryptographic transitions are slow, and engagement with PQC is encouraged now
5.2.4.Types of cryptography
5.2.5.NIST taking a lead rule in PQC standardization
5.2.6.The market for crypto-agility and encryption management tools is growing
5.2.7.Is there a case for backdoors into encryption?
5.2.8.SWOT Analysis of PQC
5.3.Quantum Communications: Hardware (QRNG and QKD)
5.3.1.Introduction to entropy-sources and true-randomness
5.3.2.What is the main value proposition of QRNG compared to incumbents?
5.3.3.Key players developing QRNG products segmented by hardware approach
5.3.4.Applications of quantum random number generators (QRNG)
5.3.5.SWOT analysis of quantum random number generator technology
5.3.6.Introduction to Quantum Key Distribution
5.3.7.How is quantum already impacting the future of encryption?
5.3.8.The basic principle of QKD uses 'observation' effects to identify eavesdroppers
5.3.9.An introduction to measuring single-qubit states
5.3.10.How can polarization and qubit states be used to securely distribute keys and the BB84 Protocol (1)
5.3.11.How can polarization and qubit states be used to securely distribute keys and the BB84 Protocol (2)
5.3.12.Why is QKD more secure than other key exchange mechanisms?
5.3.13.Overview of key players developing QKD technology (1)
5.3.14.Overview of key players developing QKD technology (2)
5.3.15.SWOT analysis of quantum key distribution technology
5.3.16.What is a quantum network?
5.3.17.China - the first to realize large scale quantum networks
5.3.18.China - focus now on quantum memories and metropolitan networks
5.3.19.Europe - a coordinated effort to build up quantum networking capacity within and between across all 27 member states
5.3.20.US - NSA and NIST focused on PQC solutions to network security
5.3.21.SWOT analysis of quantum networks
6.MATERIALS FOR QUANTUM TECHNOLOGY
6.1.Chapter Overview
6.2.Superconductors
6.2.1.Overview of superconductors in quantum technology
6.2.2.Critical temperature plays a key role in superconductor material choice for quantum technology
6.2.3.Critical material chain considerations for superconducting quantum computing
6.2.4.Overview of the superconductor value chain in quantum technology
6.2.5.Room temperature superconductors - and why they won't necessarily unlock the quantum technology market
6.3.Photonics, Silicon Photonics and Optical Components
6.3.1.Overview of photonics, silicon photonics and optics in quantum technology
6.3.2.Overview of material considerations for photonic integrated circuits (PICs)
6.3.3.Photonic computing demands better electro-optical materials, alternatives to standard silicon and warmer superconductors than niobium (1)
6.3.4.Photonic computing demands better electro-optical materials, alternatives to standard silicon and warmer superconductors than niobium (2)
6.3.5.VCSELs enable miniaturization of quantum sensors and components
6.3.6.Alkali azides used to overcome high-vacuum fabrication requirements of vapor cells for quantum sensing
6.3.7.An opportunity for better optical fiber and quantum interconnects materials
6.3.8.Opportunity for Single-photon avalanche diodes (SPADs) in quantum
6.3.9.Comparison of common photodetectors with SPADs
6.4.Nanomaterials (Graphene, CNTs, Diamond and MOFs)
6.4.1.Introduction to 2D Materials for Quantum Technology
6.4.2.Interest in TMD based quantum dots as single photon sources for quantum networking
6.4.3.Introduction to graphene membranes
6.4.4.Research interest in graphene membranes for RAM memory in quantum computers
6.4.5.2.5D Materials pitches as solution to quantum information storage
6.4.6.Single Walled Carbon Nanotubes for Quantum Computers and C12
6.4.7.Long term potential in the quantum materials market for Boron Nitride Nanotubes (BNNT)
6.4.8.Snapshot of market readiness levels of CNT applications - quantum only at PoC stage
6.4.9.Overview of diamond in quantum technology
6.4.10.Material advantages and disadvantages of diamond for quantum applications
6.4.11.Element Six are leaders in scaling up manufacturing of diamond for quantum applications using chemical vapor deposition (CVD)
6.4.12.Overview of the synthetic diamond value chain in quantum technology
6.4.13.Chromophore integrated MOFs can stabilize qubits at room temperature for quantum computing
6.4.14.Conclusions and Outlook: Summary of Material Opportunities in Quantum Technology
7.MARKET FORECASTS
7.1.Quantum Technology: Forecasting Methodology Overview
7.2.Quantum Technology Market Forecasts (Annual Revenue, USD Million)
7.3.Optimistic scenario for smart-phone QRNG
8.COMPANY PROFILES
8.1.Aegiq
8.2.Alea Quantum
8.3.AQuRand
8.4.CEA Leti (Quantum Technologies)
8.5.Cerca Magnetics
8.6.Classiq
8.7.Cold Quanta
8.8.Crocus Technology
8.9.Crypta Labs
8.10.Diraq
8.11.DocuSign
8.12.Element Six (Quantum Technologies)
8.13.Fraunhofer FEP
8.14.Gigajot
8.15.Hitachi Cambridge Laboratory (HCL)
8.16.IBM (Quantum Computing)
8.17.Infineon (Quantum Algorithms)
8.18.Infleqtion (Cold Quanta)
8.19.Menlo Systems Inc
8.20.NEC Corp: Carbon Nanohorns
8.21.nu quantum
8.22.ORCA Computing
8.23.Ordnance Survey
8.24.Oxford Ionics
8.25.PacketLight Networks
8.26.Powerlase Ltd
8.27.Q.ANT
8.28.Quantinuum
8.29.QuantrolOx
8.30.Quantum Computing Inc
8.31.Quantum Dice
8.32.Quantum Motion
8.33.Quantum Technologies
8.34.Quantum Valley Ideas Lab
8.35.Quantum XChange
8.36.QuEra
8.37.QuiX Quantum
8.38.QuSecure
8.39.Quside
8.40.Randaemon
8.41.River Lane
8.42.SEEQC
8.43.SemiWise
8.44.Senko Advance Components Ltd
8.45.Siquance
8.46.sureCore Ltd
8.47.Toshiba (Quantum Technology Center)
8.48.TriEye
8.49.VTT Manufacturing (Quantum Technologies)
8.50.XeedQ
 

価格および注文方法

量子技術市場 2024-2034年:トレンド、有力企業、予測

£$¥
電子版_PDF(ユーザー 1-5名)
£5,650.00
電子版_PDF(ユーザー 6-10名)
£8,050.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
£6,450.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
£8,850.00
電子版_PDF(ユーザー 1-5名)
€6,400.00
電子版_PDF(ユーザー 6-10名)
€9,100.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
€7,310.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
€10,010.00
電子版_PDF(ユーザー 1-5名)
$7,000.00
電子版_PDF(ユーザー 6-10名)
$10,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
$7,975.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
$10,975.00
電子版_PDF(ユーザー 1-5名)
元50,000.00
電子版_PDF(ユーザー 6-10名)
元72,000.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
元58,000.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
元80,000.00
電子版_PDF(ユーザー 1-5名)
¥990,000
電子版_PDF(ユーザー 6-10名)
¥1,406,000
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
¥1,140,000
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
¥1,556,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。

レポート概要

スライド 242
企業数 50
フォーキャスト 2034
発行日 Apr 2024
ISBN 9781835700334
 

コンテンツのプレビュー

pdf Document Sample pages
 
 
 
 

Subscription Enquiry