1. | EXECUTIVE SUMMARY |
1.1. | Advanced Li-ion technology key takeaways |
1.2. | Li-ion performance and technology timeline |
1.3. | Key technology developments |
1.4. | Silicon anode summary |
1.5. | Si-anode performance summary |
1.6. | Anode materials comparison |
1.7. | Silicon-anode company technologies and performance |
1.8. | Material opportunities from silicon anodes |
1.9. | Silicon anode value chain |
1.10. | Li-metal anodes |
1.11. | Li-metal battery developers |
1.12. | Comparison of solid-state electrolyte systems |
1.13. | SSB technology summary of various companies |
1.14. | Concluding remarks on solid-state batteries |
1.15. | Cathode development summary |
1.16. | Benefits of high and ultra-high nickel NMC |
1.17. | High-nickel CAM stabilisation |
1.18. | LMR-NMC cost profile |
1.19. | Cathode chemistry impact on lithium consumption |
1.20. | Advanced cathode chemistry comparison |
1.21. | Alternative cathode synthesis routes |
1.22. | Player involvement in advanced cathode technologies |
1.23. | Cell and battery design |
1.24. | Battery technologies - start-up activity |
1.25. | Battery technologies - regional start-up of activity |
1.26. | Battery technologies - level of regional activity |
1.27. | Battery technology start-ups - regional activity |
1.28. | Advanced Li-ion developers |
1.29. | Regional efforts |
1.30. | Battery technology comparison |
1.31. | Performance comparison by popular cell chemistries |
1.32. | Improvements to cell energy density and specific energy |
1.33. | Readiness level snapshot |
1.34. | Risks and challenges in new battery technology commercialisation |
1.35. | Risks and challenges in new battery technology commercialisation |
1.36. | BEV anode forecast (GWh) |
1.37. | BEV anode forecast (kt, US$B) |
1.38. | Advanced Li-ion anode forecast |
1.39. | BEV car cathode forecast (GWh) |
1.40. | BEV cathode forecast (GWh) |
1.41. | EV cathode forecast (GWh) |
2. | INTRODUCTION |
2.1. | Defining the scope of advanced Li-ion batteries |
2.2. | Trends in the Li-ion market |
2.3. | What is a Li-ion battery? |
2.4. | Li-ion cathode materials - LCO and LFP |
2.5. | Li-ion cathode materials - NMC, NCA and LMO |
2.6. | Li-ion anode materials - graphite and LTO |
2.7. | Li-ion anode materials - silicon and lithium metal |
2.8. | Li-ion electrolytes |
2.9. | Li-ion value chain (US$) |
2.10. | Examples of new technology entry |
3. | ANODES |
3.1. | Introduction |
3.1.1. | Types of lithium battery by anode |
3.1.2. | Anode materials discussion |
3.1.3. | Anode materials discussion |
3.1.4. | Strengths and weaknesses of anode materials |
3.1.5. | Li-ion anode materials compared |
3.1.6. | Silicon Anode Technology and Performance |
3.1.7. | Definitions |
3.1.8. | The promise of silicon |
3.1.9. | Alloy anode materials |
3.1.10. | The reality of silicon |
3.1.11. | Comparing silicon - a high-level overview |
3.1.12. | Solutions for silicon incorporation |
3.1.13. | Solutions for silicon incorporation |
3.1.14. | Key silicon anode solutions |
3.1.15. | Silicon-carbon composites |
3.1.16. | Silicon deposition |
3.1.17. | Silicon oxides and coatings |
3.1.18. | Manufacturing silicon anode material |
3.1.19. | Top Si-anode patent assignee topics |
3.1.20. | Top 3 patent assignee Si-anode technology comparison |
3.1.21. | Value proposition of high silicon content anodes |
3.1.22. | Cell energy density increases with silicon content |
3.1.23. | Strengths and weaknesses of anode materials |
3.1.24. | Silicon anodes offer significant benefits but also challenges |
3.1.25. | Key metrics for silicon anodes |
3.1.26. | Silicon-anode company technologies and performance |
3.1.27. | Cell specification data examples |
3.1.28. | Example cell performance data |
3.1.29. | Example cell performance data |
3.1.30. | Example anode material and half-cell performance data |
3.1.31. | Commercial silicon anode specification |
3.1.32. | Commercial silicon anode specification |
3.1.33. | Silicon anode material - Wacker Chemie |
3.1.34. | Silicon anode material - Umicore |
3.1.35. | Silicon anode performance |
3.1.36. | Silicon anode calendar life |
3.1.37. | Silicon anode cost benefits |
3.1.38. | Silicon anode cost potential |
3.1.39. | Silicon anode environmental benefits |
3.1.40. | Concluding remarks on Si-anode performance |
3.1.41. | Silicon Anode Market |
3.1.42. | 2022 silicon anode player developments |
3.1.43. | 2022 silicon anode player developments |
3.1.44. | 2023 silicon anode player developments |
3.1.45. | 2023 silicon anode player developments |
3.1.46. | Silicon anode deployment |
3.1.47. | Current silicon use |
3.1.48. | Silicon use in EVs |
3.1.49. | Silicon and LFP |
3.1.50. | Silicon in consumer devices |
3.1.51. | Established company interest in silicon anodes |
3.1.52. | Silicon-anode companies |
3.1.53. | Silicon-anode companies |
3.1.54. | Funding for silicon anodes continues |
3.1.55. | Silicon anode start-ups - funding |
3.1.56. | Investors into silicon anode start-ups |
3.1.57. | Investors into silicon anode start-ups |
3.1.58. | Investors into silicon anode start-ups |
3.1.59. | Regional Si-anode activity |
3.1.60. | Growth in silicon anode start-ups |
3.1.61. | Silicon anode production plans |
3.1.62. | Silicon anode production expanding |
3.1.63. | Development timelines |
3.1.64. | Silicon anode commercialisation timeline |
3.1.65. | Example timelines |
3.1.66. | Comments on commercialisation timelines |
3.1.67. | Strategic partnerships and agreements developing for silicon anode start-ups |
3.1.68. | Notable players for silicon EV battery technology |
3.1.69. | Concluding remarks on advanced silicon anode development |
3.1.70. | Silicon Anode Player Profile Examples |
3.1.71. | IDTechEx silicon anode company index |
3.1.72. | Silicon anodes - critical comparison |
3.1.73. | Silicon anodes - critical comparison |
3.1.74. | Amprius' technology |
3.1.75. | E-magy |
3.1.76. | Enevate overview |
3.1.77. | Enevate's technology |
3.1.78. | Enovix background and technology |
3.1.79. | Enovix cell performance |
3.1.80. | Group14 Technologies |
3.1.81. | LeydenJar Technologies overview |
3.1.82. | LeydenJar's technology |
3.1.83. | Ionblox |
3.1.84. | Ionblox cell performance examples |
3.1.85. | Nanomakers |
3.1.86. | Nanomakers nano silicon powder |
3.1.87. | Nexeon - patents |
3.1.88. | Nexeon - patents |
3.1.89. | Paraclete |
3.1.90. | Sila Nano |
3.1.91. | Silicon anode materials discussion |
3.1.92. | Concluding remarks on silicon anodes |
3.2. | Lithium-Metal Anodes |
3.2.1. | Introduction |
3.2.2. | Solid-state battery and lithium metal anodes |
3.2.3. | Enabling Li-metal without solid-electrolytes |
3.2.4. | Li-metal anodes can increase battery energy density |
3.2.5. | Li-metal battery developers |
3.2.6. | SES |
3.2.7. | SES technology |
3.2.8. | SES cell performance |
3.2.9. | Sion Power |
3.2.10. | Sion Power technology |
3.2.11. | Cuberg |
3.2.12. | Applications for Li-metal |
3.2.13. | The need for thin and cheap lithium foils |
3.2.14. | Li-metal corp |
3.2.15. | Pure Lithium Corporation |
3.2.16. | Pure Lithium's Li-foil electrode production |
3.2.17. | Impact of Li-metal anodes on lithium demand |
3.2.18. | Anode-less cell design |
3.2.19. | Anode-less lithium-metal cell benefits |
3.2.20. | Anode-less lithium-metal cell developers |
3.2.21. | Hybrid batteries could enable anode-free use |
3.2.22. | High energy Li-ion anode technology overview |
3.2.23. | Example timelines |
3.2.24. | Concluding remarks on Li-metal anodes |
3.3. | LTO/XNO (Lithium and Niobium Titanates) |
3.3.1. | Introduction to lithium titanate oxide (LTO) |
3.3.2. | Where will LTO play a role? |
3.3.3. | Comparing LTO and graphite |
3.3.4. | Commercial LTO comparisons |
3.3.5. | Lithium titanate to niobium titanium oxide |
3.3.6. | Niobium based anodes - Nyobolt |
3.3.7. | Vanadium oxide anodes - TyFast |
3.3.8. | Overview of LTO, niobium and vanadium based anodes |
4. | CATHODES |
4.1. | Introduction |
4.1.1. | Cathode introduction |
4.1.2. | Overview of Li-ion cathodes |
4.2. | High and Ultra-High Nickel NMC |
4.2.1. | High-nickel layered oxides definition and nomenclature |
4.2.2. | Benefits of high and ultra-high nickel NMC |
4.2.3. | Benefits of high and ultra-high nickel NMC |
4.2.4. | High-Ni / Ni-rich cycle life and stability issues |
4.2.5. | Key issues with high-nickel layered oxides |
4.2.6. | Routes to high nickel cathode stabilisation |
4.2.7. | Routes to high-nickel cathodes |
4.2.8. | Single crystal cathodes |
4.2.9. | Single crystal performance |
4.2.10. | High-nickel CAM stabilisation |
4.2.11. | Umicore |
4.2.12. | EcoPro BM |
4.2.13. | SVolt |
4.2.14. | High-nickel products |
4.2.15. | Ultra-high nickel cathode timelines |
4.2.16. | Outlook on high-Ni - commentary |
4.3. | Zero-Cobalt NMx |
4.3.1. | Zero-cobalt NMx |
4.3.2. | NMA cathode |
4.3.3. | High-nickel NMA |
4.3.4. | Extending mid-Ni voltage |
4.3.5. | Impact of high-voltage NMC operation |
4.3.6. | Impact of high-voltage operation |
4.4. | Lithium-Manganese-Rich (Li-Mn-Rich, LMR-NMC) |
4.4.1. | Lithium-manganese-rich, over-lithiated, LMR-NMC cathodes |
4.4.2. | Overview of Li-Mn-rich cathodes LMR-NMC |
4.4.3. | Stabilising lithium and manganese-rich |
4.4.4. | LMR-NMC energy density |
4.4.5. | LMR-NMC cost profile |
4.4.6. | Lithium-manganese-rich cathode developers |
4.4.7. | Commercial lithium-manganese-rich cathode development |
4.4.8. | Lithium-manganese-rich LXMO |
4.4.9. | Hybrid battery chemistry design for manganese-rich |
4.4.10. | Lithium-manganese-rich cathode SWOT |
4.5. | LNMO |
4.5.1. | High-voltage spinel cathode LNMO |
4.5.2. | LNMO development |
4.5.3. | LNMO performance |
4.5.4. | LNMO performance impact |
4.5.5. | LNMO material intensity |
4.5.6. | Cathode chemistry impact on lithium consumption |
4.5.7. | LNMO cost impact |
4.5.8. | LNMO cathode SWOT |
4.6. | LMFP |
4.6.1. | LMFP cathodes |
4.6.2. | Lithium manganese iron phosphate LMFP |
4.6.3. | LMFP performance and cost impact |
4.6.4. | LMFP performance characteristics |
4.6.5. | LFMP battery performance |
4.6.6. | LMFP commercial development |
4.6.7. | LMFP outlook |
4.6.8. | LMFP cathode SWOT |
4.7. | Alternative Cathode Production Routes |
4.7.1. | Alternative cathode synthesis routes |
4.7.2. | Conventional NMC synthesis |
4.7.3. | Conventional LFP synthesis |
4.7.4. | Dry cathode synthesis |
4.7.5. | Alternative synthesis routes |
4.7.6. | 6K Inc |
4.7.7. | 6K Energy technology |
4.7.8. | Nano One |
4.7.9. | Nano One Materials technology |
4.7.10. | Sylvatex |
4.7.11. | Novonix |
4.7.12. | Novonix cathode technology |
4.7.13. | HiT Nano |
4.7.14. | HiT Nano technology |
4.7.15. | Xerion |
4.7.16. | Xerion cathode |
4.7.17. | Cathode synthesis environmental impact |
4.7.18. | Alternative cathode production companies |
4.7.19. | New cathode synthesis outlook |
4.7.20. | Recycled cathodes |
4.7.21. | Cathode recycling developments |
4.7.22. | Recycled CAM |
4.8. | Conclusions |
4.8.1. | Concluding remarks on cathode development |
4.8.2. | Key cathode material developments overview |
4.8.3. | Future cathode prospects |
4.8.4. | Future cathode technology overview |
4.8.5. | Cathode comparisons |
4.8.6. | Player advanced cathode technologies |
4.8.7. | Advanced cathode material players |
4.8.8. | Cathode material addressable markets |
5. | SOLID-STATE BATTERIES |
5.1. | Introduction to solid-state batteries |
5.2. | Classifications of solid-state electrolyte |
5.3. | Comparison of solid-state electrolyte systems |
5.4. | Solid-state electrolyte technology approach |
5.5. | Analysis of SSB features |
5.6. | Summary of solid-state electrolyte technology |
5.7. | Current electrolyte challenges and solutions |
5.8. | Solid electrolyte material comparison |
5.9. | SSB company commercial plans |
5.10. | Solid state battery collaborations /investment by Automotive OEMs |
5.11. | Location overview of major solid-state battery companies |
5.12. | Technology summary of various companies |
5.13. | Solid-state - Blue Solutions |
5.14. | Solid-state - Prologium |
5.15. | Pack considerations for SSBs |
5.16. | Concluding remarks on solid-state batteries |
6. | CELL AND BATTERY DESIGN |
6.1. | Cell Design and Inactive Materials |
6.1.1. | 4680 tabless cell |
6.1.2. | Increasing cell sizes |
6.1.3. | Bipolar cell design |
6.1.4. | Thick format electrodes |
6.1.5. | Thick format electrodes - 24m |
6.1.6. | Dual electrolyte Li-ion |
6.1.7. | Multi-layer electrodes - EnPower |
6.1.8. | Impact of multi-layer electrode design |
6.1.9. | Prieto's 3D cell design (1/2) |
6.1.10. | Prieto's 3D cell design (2/2) |
6.1.11. | Addionics 3D current collector |
6.1.12. | Electrolyte decomposition |
6.1.13. | Electrolyte additives 1 |
6.1.14. | Electrolyte additives 2 |
6.1.15. | Electrolyte additives 3 |
6.1.16. | Electrolyte developments |
6.1.17. | Electrolyte patent topic comparisons - key battery players |
6.1.18. | Electrolyte patent topic comparisons - key electrolyte players |
6.1.19. | Carbon nanotubes in Li-ion |
6.1.20. | Key Supply Chain Relationships |
6.1.21. | Results showing impact of CNT use in Li-ion electrodes |
6.1.22. | Results showing SWCNT improving in LFP batteries |
6.1.23. | Improved performance at higher C-rate |
6.1.24. | Significance of dispersion in energy storage |
6.1.25. | Graphene coatings for Li-ion |
6.2. | Evolving Cell Performance |
6.2.1. | Energy density by cathode |
6.2.2. | BEV cell energy density trend |
6.2.3. | Cell energy density trend |
6.2.4. | Cell performance specification examples |
6.2.5. | Comparing commercial cell chemistries |
6.3. | Battery Packs and BMS |
6.3.1. | What is Cell-to-pack? |
6.3.2. | Drivers and Challenges for Cell-to-pack |
6.3.3. | What is Cell-to-chassis/body? |
6.3.4. | BYD Blade battery |
6.3.5. | CATL Cell to Pack |
6.3.6. | Cell-to-pack and Cell-to-body Designs Summary |
6.3.7. | Gravimetric Energy Density and Cell-to-pack Ratio |
6.3.8. | Volumetric Energy Density and Cell-to-pack Ratio |
6.3.9. | Cell-to-pack or modular? |
6.3.10. | Outlook for Cell-to-pack & Cell-to-body Designs |
6.3.11. | Bipolar batteries |
6.3.12. | Bipolar-enabled CTP |
6.3.13. | ProLogium: "MAB" EV battery pack assembly |
6.3.14. | Electric vehicle hybrid battery packs |
6.3.15. | CATL hybrid Li-ion and Na-ion pack concept |
6.3.16. | CATL hybrid pack designs |
6.3.17. | Our Next Energy |
6.3.18. | High energy plus high cycle life |
6.3.19. | Nio's dual-chemistry battery |
6.3.20. | Nio's design to improve thermal performance |
6.3.21. | Nio hybrid battery operation |
6.3.22. | Fuel cell electric vehicles are hybrid systems |
6.3.23. | Hybrid battery + supercapacitor |
6.3.24. | Concluding remarks |
6.3.25. | BMS innovation overview |
6.3.26. | Improvements to battery performance from BMS development |
6.3.27. | BMS introduction |
6.3.28. | Functions of a BMS |
6.3.29. | Innovations in BMS |
6.3.30. | Advanced BMS activity |
6.3.31. | Fast charging limitations |
6.3.32. | Impact of fast-charging |
6.3.33. | Fast charging protocols |
6.3.34. | Electric car charging profiles |
6.3.35. | BMS solutions for fast charging |
6.3.36. | Development of wireless BMS |
6.3.37. | Analog Devices wBMS |
6.3.38. | Wireless BMS patent example |
6.3.39. | Wireless BMS pros and cons |
6.3.40. | Concluding remarks on BMS development |
6.4. | Fast-Charging Batteries |
6.4.1. | Fast charging at different scales |
6.4.2. | Why can't you just fast charge? |
6.4.3. | Rate limiting factors at the material level |
6.4.4. | EV fast charging |
6.4.5. | Fast-charging battery developments |
6.4.6. | Fast charge design hierarchy |
6.4.7. | Fast-charging battery developments |
6.4.8. | Fast charging batteries - outlook discussion |
7. | FORECASTS |
7.1. | Total addressable markets |
7.2. | Total addressable markets (GWh) |
7.3. | BEV car cathode forecast (GWh) |
7.4. | BEV cathode forecast (GWh) |
7.5. | EV cathode forecast (GWh) |
7.6. | Silicon anode forecast methodology |
7.7. | BEV anode forecast (GWh) |
7.8. | BEV anode forecast (kt, $B) |
7.9. | EV Anode forecast (GWh) |
7.10. | EV anode forecast (GWh, kt) |
7.11. | Consumer devices Anode forecast (GWh, ktpa) |
7.12. | Consumer devices Anode forecast (GWh, kt) |
7.13. | Advanced anode forecast (GWh) |
7.14. | Advanced anode forecast (GWh, kt, $B) |
8. | COMPANY PROFILES |
8.1. | 6K Energy |
8.2. | 6K Energy |
8.3. | Addionics |
8.4. | Basquevolt |
8.5. | Brill Power |
8.6. | BTR New Material Group |
8.7. | BYD Auto |
8.8. | CENS Materials |
8.9. | Echion Technologies |
8.10. | EcoPro BM |
8.11. | Enovix |
8.12. | EnPower Inc |
8.13. | Forsee Power |
8.14. | Ganfeng Lithium |
8.15. | GDI |
8.16. | Gotion |
8.17. | Group14 Technologies |
8.18. | Group14 Technologies |
8.19. | IBU-tec Advanced Materials AG |
8.20. | Ionblox |
8.21. | Ionic Mineral Technologies |
8.22. | Iontra |
8.23. | Leclanché: Heavy-Duty EV Battery Systems |
8.24. | Leyden-Jar Technologies |
8.25. | LeydenJar Technologies |
8.26. | Li-Metal Corp |
8.27. | Nano One Materials |
8.28. | Nanomakers |
8.29. | New Dominion Enterprises |
8.30. | NIO (Battery) |
8.31. | OneD Battery Sciences |
8.32. | Our Next Energy (ONE) |
8.33. | Prieto Battery |
8.34. | Qingtao Energy Development |
8.35. | QuantumScape |
8.36. | Relectrify |
8.37. | Sila Nanotechnologies |
8.38. | Sion Power |
8.39. | Solid Power |
8.40. | South 8 Technologies |
8.41. | Storedot |
8.42. | Stratus Materials |
8.43. | Sylvatex |
8.44. | WAE Technologies |
8.45. | Yoshino Technology Inc |