Perovskite PV market to grow to US$1.2 billion by 2033 with adoption of tandem and indoor cells

钙钛矿光伏 2023 - 2033

涵盖串联、薄膜、柔性和建筑集成钙钛矿太阳能电池,以及钙钛矿 LED、传感器和光电探测器


显示全部 说明 内容、图表列表 价格 Related Content
Perovskite photovoltaics have already demonstrated remarkable efficiencies, with new applications enabled by their low cost, thin film architecture and tuneable absorption. This IDTechEx report explores the suitability and market opportunities of perovskite PV as well as the innovation opportunities and barriers to entry. It evaluates methods to resolve the main challenge of stability, as well as manufacturing methods and requirements for speciality materials.
The silicon photovoltaic (PV) market is accelerating every year. There are global initiatives to move towards renewable energy sources and public consciousness of sustainability is increasing. As such there is plenty of opportunity for new PV technologies to enter the mix and meet gaps in demand.
 
Perovskites refer to a family of materials with a specific material structure. Those used in photovoltaics have unique combination of electronic and optical properties that are extremely well-suited to this application. Perovskite PV is not expected to imminently replace silicon PV as the dominant technology; however, there is substantial motivation for its adoption. Perovskite PV can provide similarly high power density as silicon PV at lower cost, a fraction of the weight, and with a simpler manufacturing process. It can also be combined with silicon to create tandem cell architectures that can surpass the efficiency limits of single junction solar cells. Several companies are working on developing single junction perovskite and tandem PV, some of which have pilot lines and trials in progress with plans to launch commercially within the next year or two.
 
Perovskite photovoltaics can be utilized in either a thin film (left) or tandem 'perovskite-on-silicon' architecture, targeting applications such as indoor energy harvesting or rooftop PV respectively.
Remarkably rapid efficiency gains
 
Perovskite PV research took off in 2009. Since then, research into the field has catapulted. Record efficiencies are already on par with those of silicon PV, a technology with decades of research behind it. Additionally, perovskite PV does not use toxic or rare materials, and the manufacturing is well-suited to scalable solution-based deposition methods. This gives perovskite PV an edge over the existing dominant thin film alternatives such as cadmium telluride (CdTe) and copper indium gallium selenide (CIGS), which suffer from expensive synthesis and material scarcity.
 
Despite the demonstration of high efficiency perovskite solar cells, commercial adoption is limited by concerns over long-term stability. Perovskites are well-known to degrade following exposure to environmental factors such as heat, air, humidity, and UV light. Encapsulation techniques and material engineering are crucial to prevent degradation of the perovskite film - solving these high value problems is a compelling commercial opportunity.
 
 
Enabling emerging applications
 
Perovskite PV is very versatile. It can be used in mainstream applications such as in solar farms and rooftops. Since the weight of a perovskite module can be at least 90% lighter than a silicon module, it is particularly well-suited to novel applications as well such as vertical building integration and structures with low weight tolerance. These are applications that mainstream silicon-based PV is not compatible with and therefore provide a niche opportunity for perovskite PV. Flexible solar modules are another exciting recent development in photovoltaics. Thin film perovskite PV is naturally well-suited to flexible designs. Conformality allows for greater practicality and aesthetic control when integrating into building facades as well as electronic devices.
 
With the emergence of Internet of Things (IoT), it could also be a very suitable choice for self-powered smart electronics. Batteries are typically used to power small appliances. Where hundreds or thousands of individual electronics are in use, replacing batteries can be unsustainable both in terms of labour costs and number of disposable batteries. Employing low-cost PV powered devices with lifespans of 10 years could be far more economical. There is already very early-stage commercialisation of self-powered electronics using organic PV. This market is still very small and there is plenty of room for new entrants. Perovskite PV promises higher efficiencies and simpler synthesis than organics, and potentially longer lifespans.
 
 
Outlook
 
The future appears optimistic for perovskite PV, since the technology has advanced much more rapidly than any other photovoltaic technology. Unlike CdTe and CIGS active layers, perovskites do not require rare or expensive raw materials. The synthesis is straightforward and deposition can be carried out without the need for a vacuum or high temperatures. The possibility of creating flexible devices also opens up new applications that mainstream silicon PV cannot target due to their bulk, weight, and rigidity. Despite the promising advantages, concerns surrounding the lifespan of perovskite solar cells remain at the forefront of the discussion.
 
Key questions answered in this report
 
  • What is perovskite PV and how can it be used to address climate change?
  • What are the competitive existing PV technologies?
  • What are the various market segmentations?
  • What is the technology readiness level of perovskite PV?
  • What are the key drivers and hurdles for market growth?
  • Where are the key growth opportunities?
  • What is the predicted cost?
  • Who are the key players?
  • What are alternative applications of perovskites?
 
 
IDTechEx has 10 years of expertise covering printed and flexible electronics, including thin film photovoltaics. Our analysts have closely followed the latest developments in the technology and associated markets, interviewed key players across the supply chain, attended conferences, and delivered consulting projects on the field. This report examines the current status and latest trends in technology performance, supply chain, manufacturing know-how, and application development progress. It also identifies the key challenges, competition and innovation opportunities facing perovskite PV.
从 IDTechEx 访问分析师
所有报告购买订单均包括与一名专家分析师进行 30 分钟的电话交谈,专家分析师将帮助您将报告中的重要发现与您正在处理的业务问题联系起来。这需要在购买报告后的三个月内使用。
更多信息
如果您对这一报告有任何疑问,请随时联系我们的报告团队 research@IDTechEx.com 或致电我们的销售经理:

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
ASIA (Korea): +82 10 3896 6219
EUROPE (UK) +44 1223 812300
Table of Contents
1.EXECUTIVE SUMMARY
1.1.What is Perovskite PV?
1.2.Motivation for Perovskite Photovoltaics
1.3.Perovskite PV - A High Achiever
1.4.Solar PV Technology Status
1.5.Perovskite PV Targets Emerging IoT Applications
1.6.Perovskite PV for Vertical Building Integration
1.7.Perovskite PV Challenges
1.8.Thin Film Perovskite PV Roadmap
1.9.Porter's Five Forces: Thin Film Perovskite PV Market
1.10.SWOT Analysis of Thin Film Perovskite PV
1.11.Perovskite on Silicon Tandem Structures
1.12.Tandem PV Coming to Rooftops Soon
1.13.Tandem Cell Challenges
1.14.Silicon-Perovskite Tandem PV Roadmap
1.15.Porter's Five Forces: Silicon-Perovskite Tandem PV Market
1.16.SWOT Analysis of Tandem PV
1.17.Market Readiness of Perovskite Applications
1.18.Opportunities in the Supply Chain
1.19.Commercialisation of Perovskite PV Underway
1.20.Alternative Applications of Perovskites: Overview
1.21.Key Takeaways (1)
1.22.Key Takeaways (2)
2.MARKET FORECASTS
2.1.Forecasting Methodology
2.2.Forecasting Module Costs
2.3.Total Installed PV Capacity Forecast
2.4.Module Cost Forecast
2.5.Cumulative Installed Solar Farm Capacity
2.6.Annual Surface Area Production - Solar Farm
2.7.Solar Farm PV Annual Revenue
2.8.Cumulative Installed Rooftop Capacity
2.9.Annual Surface Area Production - Rooftop
2.10.Rooftop PV Annual Revenue
2.11.PV Module Costs for Wireless Electronics
2.12.Production Forecast for PV-Powered Wireless Electronics
2.13.Annual Revenue PV for Wireless Electronics
2.14.Total Annual Revenue of Perovskite PV
2.15.Annual Perovskite Cell Material Requirements
2.16.Substrates Production Forecast
2.17.Substrate Annual Revenue Forecast
2.18.Perovskite PV Deposition Methods Forecast
3.INTRODUCTION
3.1.Solar PV is the Fastest Growing Energy Source
3.2.Current Landscape of Solar PV
3.3.Solar PV Technology Status
3.4.CdTe suffers from raw material concerns
3.5.CIGS - Key player is exiting the market
3.6.What is Perovskite PV?
3.7.Perovskite PV - A High Achiever
3.8.Motivation for Perovskite Photovoltaics
3.9.Perovskite Research Begins to Plateau
3.10.Emerging Research Topics in Perovskite PV
3.11.Perovskite PV Incentivisation
3.12.Have Perovskites Lived Up to Early Expectations?
3.13.Comparing Emerging Thin Film Technologies
3.14.Perovskite PV Challenges
3.15.Perovskite PV could be low-cost alternative to GaAs
3.16.Segmenting Perovskite PV Technologies
3.17.Commercialisation of Perovskite PV Underway
3.18.Perovskite PV Value Chain
3.19.Suppliers to the Chain
3.20.Opportunities in the Supply Chain
4.THIN FILM PEROVSKITE SOLAR CELLS
4.1.Introduction: Motivation for Thin Film Solar Cells
4.2.Thin-Film Perovskite Technology
4.2.1.How Does a Thin Film Solar Cell Work?
4.2.2.Key Solar Cell Performance Metrics
4.2.3.Perovskite Solar Cell Evolution
4.2.4.n-i-p vs p-i-n configurations
4.2.5.Simple structures for scalable perovskite PV
4.2.6.Silicon processing is costly and time intensive
4.2.7.Perovskites can save time, money, and energy relative to silicon PV
4.2.8.Thin Film Perovskite PV Cost Breakdown
4.2.9.Thin Film Perovskite PV Roadmap
4.2.10.Porter's Five Forces: Thin Film Perovskite PV Market
4.2.11.SWOT Analysis of Thin Film Perovskite PV
4.2.12.Summary: Thin Film Perovskite Technology
4.3.Applications of Thin Film Perovskite PV
4.3.1.Introduction: Applications for Thin-Film Solar
4.3.2.Meeting Application Requirements - Existing Silicon vs Thin Film Perovskite
4.3.3.Thin Film PV for Indoor Energy Harvesting
4.3.4.Perovskite PV Could be Cost-Effective Alternative for Wireless Energy Harvesting
4.3.5.Perovskite PV Targets Emerging IoT Applications
4.3.6.Solar Powered Smart Packaging
4.3.7.Where is Thin Film PV Envisaged in Cars?
4.3.8.Perovskite PV for Vertical Building Integration
4.3.9.Could Perovskites Solve Challenges in PV Automotive Application?
4.3.10.Lightyear: Long Range Solar Electric Vehicle
4.3.11.Hyundai Introduces Silicon Solar Panels on Cars
4.3.12.Armor/ASCA Developing Portable PV Panels
4.3.13.Summary
4.4.Thin Film Perovskite Industry Players
4.4.1.Saule Technologies: Overview
4.4.2.Saule Technologies' Key Product
4.4.3.Saule Technologies' Value Propositions
4.4.4.Saule Technologies' Manufacturing Approach
4.4.5.Saule Technologies' Business Model
4.4.6.Saule Technologies: SWOT
4.4.7.Microquanta Semiconductor: Targeting both thin film and silicon/perovskite tandem.
4.4.8.Microquanta Emphasises Stability
4.4.9.Microquanta Semiconductor: SWOT
4.4.10.GCL New Energy: Established player planning to enter the perovskite market (I)
4.4.11.GCL New Energy: Established player planning to enter the perovskite market (II)
4.4.12.GCL New Energy: SWOT
4.4.13.Swift Solar: Developing thin-film tandem cells
4.4.14.Swift Solar's All-Perovskite Approach
4.4.15.Swift Solar Perovskite PV for Electric Cars
4.4.16.Non-Solution Deposition Techniques Could Benefit All-Perovskite Tandem
4.4.17.Swift Solar: SWOT
4.4.18.Summary of Players (perovskite thin film)
5.PEROVSKITE ON SILICON TANDEM SOLAR CELLS
5.1.Tandem Technology
5.1.1.Thin film vs tandem perovskite PV
5.1.2.Tandem Solar Cells to Surpass Theoretical Efficiency Limits of Single Junction
5.1.3.Silicon-Perovskite Tandem Advantages
5.1.4.Perovskite on Silicon Tandem Structures
5.1.5.Tandem Cell Configurations
5.1.6.Tandem Cell Challenges
5.1.7.Tandem Process Flow
5.1.8.Silicon-Perovskite Tandem Cost Breakdown
5.1.9.Silicon-Perovskite Tandem PV Roadmap
5.1.10.Porter's Five Forces: Silicon-Perovskite Tandem PV Market
5.1.11.SWOT Analysis of Tandem PV
5.1.12.Summary
5.2.Applications of Tandem Silicon-Perovskite PV
5.2.1.Introduction: Applications of Perovskite on Silicon Tandem
5.2.2.Tandem PV Coming to Rooftops Soon
5.2.3.Tandem PV Could Boost Solar Farms
5.2.4.Could Silicon-Perovskite Tandem Work in Windows?
5.3.Industry Players
5.3.1.Oxford PV: Major player in silicon-perovskite tandem PV
5.3.2.Business Model of Oxford PV
5.3.3.Oxford PV is entering an unestablished market
5.3.4.Oxford PV: SWOT
5.3.5.CubicPV: Early stage silicon-perovskite developer
5.3.6.CubicPV's Direct Wafer® Method
5.3.7.CubicPV: SWOT
5.3.8.Summary of Key Players (silicon-perovskite tandem)
6.RESOLVING THE STABILITY CHALLENGE
6.1.Stability poses a challenge to commercialisation
6.2.Extrinsic degradation
6.3.Intrinsic degradation mechanisms
6.4.Material engineering can improve stability but compromise optical properties
6.5.Glass-glass encapsulation to prevent extrinsic degradation
6.6.Comparison of common polymer encapsulant materials
6.7.Thin Film Encapsulation
6.8.Al2O3 is an upcoming thin film encapsulant
6.9.Commercial Flexible Encapsulation
6.10.Tera Barrier's Solar Barrier Film
6.11.Summary: Perovskite stability
7.SCALABLE DEPOSITION METHODS FOR PEROVSKITE PV
7.1.Introduction: Deposition of Perovskites
7.2.Deposition Techniques for Scalable Processing
7.3.Sputtering for High Purity Deposition
7.4.AACVD is an emerging solution-based vacuum approach
7.5.Inkjet Printing for High Spatial Resolution
7.6.Blade coating is cheap but inconsistent
7.7.Slot-die coating is promising for industry
7.8.Spray coating - rapid but wasteful
7.9.Poor spatial resolution wastes material
7.10.Comparison of Deposition Methods
7.11.How to Decide on Perovskite Deposition Methods?
7.12.Towards Roll-to-Roll Printing
7.13.Novel Deposition Technique by Creaphys/MBraun
7.14.Summary of Deposition Methods
8.MATERIALS FOR PEROVSKITE SOLAR CELLS
8.1.Introduction to Materials for Perovskite PV
8.1.1.Materials Opportunities
8.2.Substrate Materials
8.2.1.Substrate Choices: Conventional and Emerging
8.2.2.Limitations of Rigid Glass Substrates
8.2.3.Alternatives to Rigid Glass
8.2.4.Flexible Glass Substrates
8.2.5.What is Ultra-Thin Flexible Glass?
8.2.6.Ultra-Thin Glass Improves Flexibility
8.2.7.Encapsulation Advantages of Ultra-Thin Flexible Glass
8.2.8.Corning Willow Flexible Glass
8.2.9.Schott Solar Flexible Glass
8.2.10.Plastic Substrates - Cheap and Flexible
8.2.11.Barrier Layer Requirement Increases Cost of Plastic Substrates
8.2.12.Why Use Metal Foil Substrates?
8.2.13.Substrate Surface Roughness Impacts Cell Performance
8.2.14.Substrate Material Supply Opportunities
8.2.15.Substrate Cost Comparison
8.2.16.Benchmarking Substrate Materials
8.2.17.How to Choose a Substrate?
8.3.Transparent Conducting Films
8.3.1.Strong opportunity for development of alternative TCF materials
8.3.2.Wide Choice of Transparent Conducting Films
8.3.3.Key TCF properties: haze, transmission and sheet resistance
8.3.4.Transparent Conductor Choice Influences Technical Approach
8.3.5.Stretchable CNT conducting films
8.3.6.Graphene faces a difficult compromise
8.3.7.Benefits of silver nanowire TCFs
8.3.8.Silver price volatility affects feedstock cost
8.4.Perovskite Active Layer
8.4.1.Perovskite Material Components
8.4.2.Are Lead Concerns Justified?
8.4.3.Public Perception vs Reality of Lead
8.4.4.Material composition influences optics
8.4.5.Perovskite Raw Materials - Commoditised Market
8.5.Charge Transport Layers
8.5.1.High Demand for Low Cost Transport Layers
8.5.2.Organic charge transport layers have high complexity
8.5.3.SFX - An Alternative to Spiro?
8.5.4.Charge Transport Layer Can Limit Cell Efficiency
8.5.5.Inorganic Charge Transport Layers
8.5.6.Emergence of HTL-free perovskite cells
8.5.7.Carbon-based HTL-free perovskite cells
8.5.8.Do HTL-free cells have a future?
8.5.9.Summary of Materials
9.ALTERNATIVE APPLICATIONS OF PEROVSKITES
9.1.Alternative Applications of Perovskites: Overview
9.1.1.Technology Status of Conventional and Alternative Applications of Perovskites
9.2.Light Emitting Diodes
9.2.1.Working Principle of Perovskite LEDs
9.2.2.Opportunity for High Energy UV emitting Perovskite LEDS
9.2.3.Wide Variety of Potential Markets for Perovskite LEDs
9.2.4.Perovskite LEDs: SWOT
9.3.Photodetectors
9.3.1.Introduction to Thin Film Photodetectors
9.3.2.Photodetector Working Principles
9.3.3.Segmenting the Electromagnetic Spectrum
9.3.4.Perovskite Absorption Limited to Visible Range
9.3.5.Holst Centre Perovskite Based Image Sensors
9.3.6.Photodetectors for Autonomous Vehicles
9.3.7.Perovskite Photodetectors: SWOT
9.4.X-Ray Detectors
9.4.1.Siemens Healthineers: Direct X-Ray Sensing with Perovskites
9.4.2.X-Ray Detectors: SWOT
9.5.Perovskite quantum dots
9.5.1.Perovskite quantum dots for color enhancement/conversion (I)
9.5.2.Perovskite quantum dots for color enhancement/conversion (II)
9.5.3.Perovskite Quantum Dot Lasers
9.5.4.Perovskite Quantum Dots: SWOT
 

Ordering Information

钙钛矿光伏 2023 - 2033

£$¥
电子版(1-5 名用户)
£5,650.00
电子版(6-10 名用户)
£8,050.00
电子版及 1 份硬拷贝文件(1-5 名用户)
£6,450.00
电子版及 1 份硬拷贝文件(6-10 名用户)
£8,850.00
电子版(1-5 名用户)
€6,400.00
电子版(6-10 名用户)
€9,100.00
电子版及 1 份硬拷贝文件(1-5 名用户)
€7,310.00
电子版及 1 份硬拷贝文件(6-10 名用户)
€10,010.00
电子版(1-5 名用户)
$7,000.00
电子版(6-10 名用户)
$10,000.00
电子版及 1 份硬拷贝文件(1-5 名用户)
$7,975.00
电子版及 1 份硬拷贝文件(6-10 名用户)
$10,975.00
电子版(1-5 名用户)
¥990,000
电子版(6-10 名用户)
¥1,406,000
电子版及 1 份硬拷贝文件(1-5 名用户)
¥1,140,000
电子版及 1 份硬拷贝文件(6-10 名用户)
¥1,556,000
电子版(1-5 名用户)
元50,000.00
电子版(6-10 名用户)
元72,000.00
电子版及 1 份硬拷贝文件(1-5 名用户)
元58,000.00
电子版及 1 份硬拷贝文件(6-10 名用户)
元80,000.00
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。

报告统计信息

幻灯片 245
预测 2033
ISBN 9781915514035
 

预览内容

pdf Document Webinar Slides - EOY 2022
pdf Document Webinar Slides
pdf Document Sample pages
 
 
 
 

Subscription Enquiry