This report has been updated. Click here to view latest edition.
If you have previously purchased the archived report below then please use the download links on the right to download the files.
1. | EXECUTIVE SUMMARY |
1.1. | Types of lithium battery |
1.2. | Fast-charging battery developments |
1.3. | Value proposition of high silicon content anodes |
1.4. | Silicon anodes - critical comparison |
1.5. | Silicon anode start-ups - funding |
1.6. | Material opportunities from silicon anodes |
1.7. | Company benchmark comparison |
1.8. | Silicon anode value chain |
1.9. | Li-ion battery cell structure - Li-metal |
1.10. | Li-metal battery developers |
1.11. | Improvements to cell energy density and specific energy |
1.12. | Timeline and outlook for Li-ion energy densities |
1.13. | Li-ion timeline commentary |
1.14. | Lithium-sulphur batteries - advantages |
1.15. | Lithium-sulphur companies |
1.16. | Li-S cost comparisons |
1.17. | Value proposition of Li-S batteries |
1.18. | What markets exist for lithium sulphur batteries? |
1.19. | Na-ion companies compared |
1.20. | Na-ion performance compared |
1.21. | Appraisal of Na-ion |
1.22. | Value proposition of Na-ion batteries |
1.23. | Introduction to Redox Flow Batteries |
1.24. | RFB market share by chemistry |
1.25. | Zn-based batteries - introduction |
1.26. | Rechargeable zinc battery companies |
1.27. | Commercialisation timeline examples |
1.28. | Battery technologies - start-up activity |
1.29. | Battery technologies - regional start-up of activity |
1.30. | Battery technologies - level of regional activity |
1.31. | Battery technology start-ups - regional activity |
1.32. | Regional efforts |
1.33. | Regional efforts |
1.34. | Battery technology comparison |
1.35. | Li-ion technology diversification |
1.36. | Addressable Li-ion markets (GWh) |
1.37. | Total advanced anode market |
1.38. | Company developments in H1 2021 |
1.39. | Readiness level snapshot |
2. | INTRODUCTION |
2.1. | Battery chemistries |
2.2. | Lithium battery chemistries |
2.3. | Importance of energy storage |
2.4. | Electric vehicles needed |
2.5. | Why are Li-ion battery advancements needed? |
2.6. | Why are alternative battery chemistries needed? |
2.7. | Where will performance improvements come from? |
2.8. | Electrochemistry definitions |
2.9. | Useful charts for performance comparison |
2.10. | Ragone plots |
3. | ADVANCED LITHIUM BATTERIES |
3.1.1. | Defining the scope of advanced Li-ion batteries |
3.1.2. | What is a Li-ion battery? |
3.1.3. | More than one type of Li-ion battery |
3.1.4. | Li-ion cathode materials - LCO and LFP |
3.1.5. | Li-ion cathode materials - NMC, NCA and LMO |
3.1.6. | Li-ion anode materials - graphite and LTO |
3.1.7. | Li-ion anode materials - silicon and lithium metal |
3.1.8. | Li-ion electrolytes |
3.2. | Silicon anodes |
3.2.1. | Definitions |
3.2.2. | The promise of silicon |
3.2.3. | Value proposition of high silicon content anodes |
3.2.4. | The reality of silicon |
3.2.5. | Alloy anode materials |
3.2.6. | Comparing silicon - a high-level overview |
3.2.7. | Solutions for silicon incorporation |
3.2.8. | Manufacturing silicon anode material |
3.2.9. | How much can silicon improve energy density? |
3.2.10. | Cost reductions from silicon |
3.2.11. | Current silicon use |
3.2.12. | Silicon use in EVs |
3.2.13. | Silicon and LFP |
3.2.14. | Impact of silicon in an LFP cell |
3.2.15. | Will silicon content increase steadily? |
3.2.16. | Silicon anode start-ups |
3.2.17. | Start-ups developing silicon anode solutions |
3.2.18. | Regional Si-anode activity |
3.2.19. | Upstream interest in silicon |
3.2.20. | Commercial technology directions |
3.2.21. | Notable players for silicon EV battery technology |
3.2.22. | Solid-state and silicon timeline |
3.2.23. | Development timelines |
3.2.24. | Silicon commercialisation timelines |
3.2.25. | Prototype and targeted improvements from silicon |
3.2.26. | Money in silicon anode start-ups |
3.2.27. | Silicon anode start-ups - funding |
3.2.28. | Si-anode start-up patents |
3.2.29. | Established company interest in silicon |
3.2.30. | Silicon anode material - Wacker Chemie |
3.2.31. | Samsung's silicon-graphene ball anode |
3.2.32. | Panasonic-Tesla |
3.2.33. | Silicon in consumer devices |
3.2.34. | Top 3 Si-anode patent assignees |
3.2.35. | Top 3 patent assignee Si-anode technology comparison |
3.2.36. | Silicon anode value chain |
3.2.37. | Silicon anode value chain investments and partnerships |
3.2.38. | Changes in manufacturing |
3.2.39. | Material opportunities from silicon anodes |
3.2.40. | Applications for Si-anodes |
3.2.41. | Silicon and solid-state |
3.2.42. | Silicon anode technology development overview |
3.2.43. | Barriers to high silicon utilisation |
3.2.44. | Market for silicon anodes |
3.2.45. | Silicon anode company profiles |
3.2.46. | Comparing silicon anode solutions and companies |
3.2.47. | Advano - overview |
3.2.48. | Advano patents |
3.2.49. | Amprius - overview |
3.2.50. | Amprius - technology and performance |
3.2.51. | Amprius - patents |
3.2.52. | E-magy - background |
3.2.53. | E-magy technology |
3.2.54. | Enevate - overview |
3.2.55. | Enevate Technology |
3.2.56. | Enevate patents |
3.2.57. | Enovix overview |
3.2.58. | Enovix technology |
3.2.59. | Eocell |
3.2.60. | Group14 Technologies - overview |
3.2.61. | Group 14 - technology and performance |
3.2.62. | Group14 Technologies - patents |
3.2.63. | Nanograf - overview |
3.2.64. | Nanograf performance |
3.2.65. | Nanograf - patents |
3.2.66. | Nexeon - overview |
3.2.67. | Nexeon - patents |
3.2.68. | One D Battery Sciences |
3.2.69. | One D - technology |
3.2.70. | Sila Nano - overview |
3.2.71. | Sila Nano - technology and patents |
3.2.72. | Storedot - overview |
3.2.73. | Storedot patents |
3.2.74. | Storedot - patents |
3.2.75. | NEO Battery Materials anode performance |
3.2.76. | Talga Resources |
3.2.77. | Silicon anodes - critical comparison |
3.2.78. | Company benchmark comparison |
3.2.79. | Approaches to silicon rich anodes |
3.2.80. | Concluding remarks |
3.3. | Lithium-metal and solid-state |
3.3.1. | Lithium-metal anodes |
3.3.2. | Li-ion battery cell structure - Li-metal |
3.3.3. | Difficulty of Li-metal anodes |
3.3.4. | Enabling Li-metal without solid-electrolytes |
3.3.5. | Energy density of lithium-metal anode designs |
3.3.6. | Anode-less cell design |
3.3.7. | Anode-less lithium-metal cells |
3.3.8. | Anode-less lithium-metal cell developers |
3.3.9. | SES |
3.3.10. | SES Technology |
3.3.11. | SES patents |
3.3.12. | Sion Power |
3.3.13. | Sion Power technology |
3.3.14. | Sion Power patents |
3.3.15. | Cuberg |
3.3.16. | Cuberg patents |
3.3.17. | Polyplus |
3.3.18. | Li-metal battery developers |
3.3.19. | Applications for Li-metal |
3.3.20. | Competition for Li-metal |
3.4. | Solid-state batteries |
3.4.1. | What is a solid-state battery (SSB)? |
3.4.2. | Lithium-ion batteries vs. solid-state batteries |
3.4.3. | How can solid-state batteries increase performance? |
3.4.4. | Close stacking |
3.4.5. | Energy density improvement |
3.4.6. | Value propositions and limitations of solid state battery |
3.4.7. | Flexibility and customisation provided by solid-state batteries |
3.4.8. | Solid-state battery literature analysis |
3.4.9. | How to design a good solid-state electrolyte |
3.4.10. | Solid-state electrolyte technology approach |
3.4.11. | Classifications of solid-state electrolyte |
3.4.12. | Summary of solid-state electrolyte technology |
3.4.13. | Technology evaluation |
3.4.14. | Companies working on polymer solid state batteries |
3.4.15. | Companies working on oxide solid state batteries |
3.4.16. | Companies working on sulphide solid state batteries |
3.4.17. | Concluding remarks on solid-state batteries |
3.5. | Lithium titanates and niobates |
3.5.1. | Introduction to lithium titanate oxide (LTO) |
3.5.2. | Where will LTO play a role? |
3.5.3. | Comparing LTO and graphite |
3.5.4. | Commercial LTO comparisons |
3.5.5. | Toshiba |
3.5.6. | Microvast |
3.5.7. | Altairnano / Yinlong |
3.5.8. | Leclanche |
3.5.9. | Forsee Power |
3.5.10. | XALT Energy |
3.5.11. | Battery pack manufacturers using LTO |
3.5.12. | Lithium titanate to niobium titanium oxide |
3.5.13. | Niobium based anodes - Echion Technologies |
3.5.14. | Niobium based anodes - Nyobolt |
3.5.15. | Niobium tungsten oxide |
3.5.16. | Vanadium oxide anodes |
3.5.17. | Concluding remarks on LTO, niobium and vanadium based anodes |
3.6. | Advanced Li-ion cathodes |
3.6.1. | Cathode materials - LCO and LFP |
3.6.2. | Cathode materials - NMC, NCA and LMO |
3.6.3. | Cathode recap |
3.6.4. | Cathode powder synthesis (NMC) |
3.6.5. | Cathode developments |
3.6.6. | Moving to high-nickel layered oxides |
3.6.7. | NCMA cathode |
3.6.8. | General Motors Ultium platform |
3.6.9. | High-Ni cathode roadmaps |
3.6.10. | NMA cathode |
3.6.11. | Beyond metal percentages |
3.6.12. | Cost reduction from cell chemistry |
3.6.13. | High manganese cathodes - LMO, LMR-NMC |
3.6.14. | High manganese cathodes - LMP, LMFP |
3.6.15. | High-voltage LNMO |
3.6.16. | Haldor Topsoe's LNMO |
3.6.17. | Developments for high-voltage LNMO |
3.6.18. | LMFP cathodes |
3.6.19. | LMFP development |
3.6.20. | High-level performance comparison |
3.6.21. | Material intensity of NMC, Li-Mn-rich, LNMO |
3.6.22. | Potential cost reduction from high manganese content |
3.6.23. | New cathode synthesis methods - 6K Energy |
3.6.24. | 6K Energy - technology |
3.6.25. | New cathode synthesis method - Nano One |
3.6.26. | Nano One process |
3.6.27. | Nano One - cathode performance |
3.6.28. | Li-Mn-rich cathodes |
3.6.29. | Li and Mn rich - Samsung |
3.6.30. | Zenlabs Li- and Mn-rich |
3.6.31. | Stabilising high-nickel NMC |
3.6.32. | Cathode coating technology - CamX Power |
3.6.33. | Protective coatings |
3.6.34. | Protective coatings - companies |
3.6.35. | Cathode materials |
3.6.36. | Cathode development overview |
3.6.37. | Concluding remarks |
3.7. | Layered oxide (NMC, NCA) cathode patent development |
3.7.1. | Top 10 NMC/NCA patent assignees |
3.7.2. | Player rank by number of active and pending patents |
3.7.3. | Top 3 NMC assignee's main IPC comparison |
3.7.4. | Top 3 assignee technology comparison |
3.7.5. | High nickel cathode synthesis |
3.7.6. | Low cobalt NCA - SMM |
3.7.7. | High nickel cathode stabilisation |
3.7.8. | Single crystal NCA cathode |
3.7.9. | EcoPro high-Ni concentration gradient synthesis |
3.7.10. | Cathode concentration gradient |
3.7.11. | Ternary cathode patent overview |
3.8. | Inactive materials and cell design |
3.8.1. | Carbon nanotubes in Li-ion |
3.8.2. | Impact of CNT use in Li-ion electrodes |
3.8.3. | Nanocarbon electrode structure - Nanoramic |
3.8.4. | Thick format electrodes |
3.8.5. | Thick format electrodes - 24m |
3.8.6. | Dual electrolyte Li-ion |
3.8.7. | Thick format electrodes - using CNTs |
3.8.8. | Graphene coatings for Li-ion |
3.8.9. | Current collectors |
3.8.10. | 3D current collector - Addionics |
3.8.11. | Plastic current collectors |
3.8.12. | Soteria business model and value proposition |
3.8.13. | Multi-layer electrodes - EnPower |
3.8.14. | Impact of multi-layer electrode design |
3.8.15. | Benefits of dry electrode manufacturing |
3.8.16. | Dry electrode manufacturing and binderless electrodes |
3.8.17. | 4680 tabless cell |
3.8.18. | Increasing cell sizes |
3.8.19. | Bipolar cell design |
3.8.20. | Bipolar design - Prologium |
3.8.21. | Cell design options |
4. | LI-ION ENERGY DENSITY AND TECHNOLOGY TIMELINE |
4.1. | Academic figures on energy density improvement |
4.2. | Increasing BEV battery cell energy density |
4.3. | Increasing EV battery cell specific energy |
4.4. | Extrapolating improvements to energy density and specific energy |
4.5. | Improvements to cell energy density and specific energy |
4.6. | Cell energy density and specific energy - data |
4.7. | Prototype and targeted improvements to cell energy density and specific energy - data |
4.8. | Commentary on improving cell energy densities |
4.9. | IDTechEx calculations |
4.10. | IDTechEx energy density calculations - by cathode |
4.11. | Energy density improvements from silicon |
4.12. | Next generation cathodes |
4.13. | Cell design to increase energy densities |
4.14. | How high can you go with 'conventional' electrodes? |
4.15. | How high can you go with next gen materials? |
4.16. | How high can you go with next gen materials? |
4.17. | Discussion of outlook for Li-ion energy density improvement |
4.18. | Timeline and outlook for Li-ion energy densities |
4.19. | Li-ion timeline commentary |
5. | LITHIUM-SULPHUR |
5.1. | Lithium-sulphur batteries - introduction |
5.2. | Operating principle of Li-S |
5.3. | Lithium-sulphur batteries - advantages |
5.4. | Li-S advantages and use cases |
5.5. | Challenges with lithium-sulphur |
5.6. | Polysulphide dissolution |
5.7. | Li-S challenges - poor sulphur utilisation and excess electrolyte |
5.8. | Energy densities comparison |
5.9. | Energy densities comparison |
5.10. | Engineering challenges to commercial Li-S |
5.11. | Solutions to Li-S challenges |
5.12. | Lithium-sulphur commercialisation - recent developments |
5.13. | Oxis Energy - case study |
5.14. | Oxis Energy - battery performance |
5.15. | Oxis Energy - case study analysis |
5.16. | NexTech |
5.17. | NexTech - technology |
5.18. | Graphene Batteries AS |
5.19. | Graphene Batteries AS - performance |
5.20. | Li-S Energy |
5.21. | Li-S Energy - Deakin University |
5.22. | Lyten |
5.23. | LG Chem Li-S IP |
5.24. | Use of platinum group metals |
5.25. | Li-sulphur commercialisation |
5.26. | Lithium-sulphur companies |
5.27. | Li-S cost structure |
5.28. | Li-S material intensity |
5.29. | Li-S cost calculation |
5.30. | Li-S cost comparisons |
5.31. | Value proposition of Li-S batteries |
5.32. | Value chain and targeted markets |
5.33. | What markets exist for lithium sulphur batteries? |
5.34. | What markets exist for lithium sulphur batteries? |
5.35. | Academic activity |
5.36. | Li-S patent activity |
5.37. | Li-S patent activity - top assignees |
5.38. | Concluding remarks on Li-S |
5.39. | Alternatives to lithium based batteries |
5.40. | Alternative battery chemistries |
5.41. | Company timelines - Li-ion alternatives |
6. | SODIUM-ION (NA-ION) |
6.1. | Introduction to sodium-ion batteries |
6.2. | Na-ion cathode materials |
6.3. | Na-ion anode materials |
6.4. | Reasons to develop Na-ion |
6.5. | Na-ion vs Li-ion |
6.6. | Recent developments in Na-ion |
6.7. | Natron Energy - introduction |
6.8. | Na-ion using Prussian blue analogues |
6.9. | Natron Energy |
6.10. | Faradion - background |
6.11. | Faradion - technology |
6.12. | Faradion |
6.13. | HiNa Battery |
6.14. | Tiamat Energy |
6.15. | Altris AB |
6.16. | CATL enter Na-ion market |
6.17. | CATL Na-ion IP portfolio |
6.18. | CATL Na-ion patent examples |
6.19. | Broadbit Batteries |
6.20. | Aqueous Na-ion |
6.21. | Geyser Batteries |
6.22. | Na-ion patent activity |
6.23. | Na-ion companies compared |
6.24. | Na-ion performance compared |
6.25. | Appraisal of Na-ion |
6.26. | Value proposition of Na-ion batteries |
6.27. | Outlook for Na-ion |
6.28. | What markets exist for Na-ion batteries? |
6.29. | Target markets for Na-ion |
7. | ALUMINIUM-ION (AL-ION) |
7.1. | Why the interest in aluminium-ion? |
7.2. | Al-ion batteries - initial academic interest |
7.3. | Al-ion batteries - academic interest over time |
7.4. | Al-ion interest by university and region |
7.5. | Recent developments in Al-ion commercialisation |
7.6. | Al-ion batteries - state of technology |
7.7. | Battery chemistries compared |
7.8. | Options for fast-charging batteries |
7.9. | Conclusions |
8. | REDOX FLOW BATTERIES |
8.1. | Redox Flow Battery: Working Principle |
8.2. | Introduction to RFBs |
8.3. | Redox Flow Battery Classification |
8.4. | RFB chemistries: All Vanadium (VRFB) |
8.5. | RFB chemistries: Zinc Bromine flow battery (ZBB) - Hybrid |
8.6. | RFB Chemistries: All-Iron - Hybrid |
8.7. | Technology Recap |
8.8. | List of RFB Producers: Categorized by chemistry |
8.9. | RFB market |
8.10. | RFB market deployment |
8.11. | RFB Companies Market Share |
8.12. | Vanadium, Zinc, Iron - the great RFB contenders |
8.13. | RFB concluding remarks |
9. | ZN-BASED BATTERIES (ZINC-AIR, ZINC-ION, ZINC-BROMIDE) |
9.1. | Zn-based batteries |
9.2. | Zn-based batteries - introduction |
9.3. | Zinc-based batteries |
9.4. | Rechargeable zinc battery companies |
9.5. | Zinc-air batteries |
9.6. | Problems and solutions for rechargeable Zn-air batteries |
9.7. | Zinc 8 Energy |
9.8. | Zinc 8 Energy IP |
9.9. | E-Zinc |
9.10. | Zinc bromide batteries |
9.11. | Eos Energy Enterprise |
9.12. | Eos Energy - static Zn-Br battery |
9.13. | Eos Energy technology |
9.14. | Rechargeable Zn-MnO2 |
9.15. | Zn-ion battery - Salient Energy |
9.16. | Salient Energy IP |
9.17. | Enerpoly |
9.18. | Remarks on Zn-based batteries |
10. | HIGH TEMPERATURE BATTERIES |
10.1. | High-temperature batteries |
10.2. | NaS - NGK Insulators |
10.3. | Molten calcium battery - Ambri Inc |
11. | SUPERCAPACITORS |
11.1. | Supercapacitor fundamentals |
11.2. | Equations and charge-discharge behaviour |
11.3. | Inside a supercapacitor |
11.4. | What is a supercapacitor made of? |
11.5. | Supercapacitor performance comparison |
11.6. | Material development options |
11.7. | Carbon nanotubes |
11.8. | Graphene |
11.9. | Nanocarbon supercapacitor Ragone plots |
11.10. | Electrolytes |
11.11. | 100 Wh/kg supercapacitors? |
11.12. | Solid electrolytes - Super Dielectrics ltd |
11.13. | Pseudocapacitors |
11.14. | Pseudocapacitive materials |
11.15. | Performance of pseudocapacitors |
11.16. | Promise and reality of pseudocapacitors |
11.17. | Hybrid supercapacitors |
11.18. | Li-ion and hybrid capacitors |
11.19. | Tokyo University of Agriculture and Technology |
11.20. | Structural supercapacitors |
12. | FAST CHARGING BATTERIES |
12.1. | Fast charging at different scales |
12.2. | Why can't you just fast charge? |
12.3. | Rate limiting factors at the material level |
12.4. | Fast charge design hierarchy - levers to pull |
12.5. | Porsche Taycan fast charge |
12.6. | Tesla's use of NCA |
12.7. | LFP to gain traction? |
12.8. | Fast-charging battery developments |
12.9. | Fast charging batteries - outlook discussion |
13. | ADDRESSABLE MARKETS AND FORECASTS |
13.1. | Addressable markets |
13.2. | Addressable Li-ion markets (GWh) |
13.3. | Addressable market - hybrid EVs |
13.4. | Cathode demand for BEVs (GWh) |
13.5. | Cathode demand (GWh) |
13.6. | Silicon anode forecast methodology |
13.7. | Anode demand from BEVs, GWh |
13.8. | Anode demand from BEVs, GWh |
13.9. | Silicon anode material demand from BEVs, ktpa |
13.10. | Silicon anode material demand from BEVs, ktpa |
13.11. | Anode active material market from BEVs, $B |
13.12. | Anode active material market from BEVs, $B |
13.13. | Li-ion and anode material demand from EVs (exc. BEVs) by anode type |
13.14. | Li-ion demand from EVs (exc. BEVs) by anode type, GWh and kt |
13.15. | Li-ion demand from consumer devices by anode, GWh |
13.16. | Total advanced anode market |
13.17. | Stationary energy storage |
13.18. | RFB, Na-ion and Zn-based forecast |
13.19. | RFB, Na-ion and Zn-based battery forecast |
スライド | 502 |
---|---|
フォーキャスト | 2032 |
ISBN | 9781913899844 |