IDTechEx预测,到2034年,工业热能存储的市场规模将达45亿美元。

2024年-2034年热能储存:技术、参与者、市场和预测

在工业加热过程中的脱碳和更广泛市场(LDES、CSP)的热能储存(TES)分析,包括技术(熔盐、固态、PCM、电热、热化学)、参与者、项目、措施 & 预测。


显示全部 说明 内容、图表列表 价格 Related Content
全球25%的能源污染源于工业热生产。但是,新兴的热能储存(TES)技术正逐步商业化,其采用低成本且资源丰富的材料,如熔盐、混凝土和耐火砖,为工业过程提供清洁的脱碳热量。在国家层面资金的大力扶持下,加之关键地区天然气价格的持续上涨,工业TES市场将迎来迅猛增长。这份由IDTechEx精心编制的报告,深入剖析了TES技术的发展现状、市场参与者、重点项目以及政府所采取的积极措施,并对未来趋势进行了预测和全面分析。
本报告提供以下信息:
 
  • 讨论和分析为工业过程提供脱碳热能的热能存储(TES)的地区市场增长驱动因素,以及预计较早出现增长的地区。这包括对地区工业终端用户天然气价格的评论,以及政府或州一级的资金、项目和倡议,重点关注工业过程热能的去碳化。
  • 全面分析和讨论热能存储在煅烧、干燥、金属热处理和熔化、工艺流体加热、发电等工业流程中的应用。其中包括根据工艺温度要求、热量类型(对流、传导、辐射、空气、蒸汽等)以及工业加热工艺的直接电气化工作,分析已确定的热能存储技术在这些工艺中的适用性。
  • 介绍用于长效储能(LDES)应用的热能存储,包括主要参与者和项目、支持绝热压缩空气储能(CAES)和液态空气储能(LAES)的 LDES 技术以及化学循环工艺。
  • 按容量(兆瓦时)、行业部门、商业准备程度(原型、试点、示范、商业规模)、地区和参与者分类,深入分析 TES 行业的市场概况和数据,包括价值链、战略合作伙伴关系、资金、材料供应商、商业模式、主要参与者的活动、制造发展以及到 2027 年的现有和计划项目。在适用情况下,还提供了包含项目详细信息(如项目描述、客户、资金)的原始项目数据。
  • 包括与电网规模的聚光太阳能发电厂(CSP)配对的热能存储项目的市场概述 - 也提供原始项目数据。还包括对其他热能存储市场的讨论。
  • 对热能存储技术和材料进行了全面、广泛的介绍和分析,包括显热(熔盐、固态如混凝土、耐火砖)、潜热(相变材料)以及电热/抽水热能存储(ETES/PTES)技术。其中包括系统指标(如成本、存储温度、往返效率、使用寿命)、主要参与者的活动、示范项目和商业开发。
  • 对热化学储能技术(TCES)的深入报道、讨论和分析,包括热化学储能技术(吸附和化学反应)和系统的类型、可能进行进一步研究和开发的已确定材料和技术,以及已确定的原型和试验系统。
  • 2020-2034 年期间,按技术(千兆瓦时)、地区(千兆瓦时)、应用(千兆瓦时)和价值(十亿美元)分列的工业和长效储能应用的 10 年期热能存储细分 市场预测。
 
本报告涵盖的主要内容:
  • 内容摘要
  • 热能存储简介
  • 热能存储的区域市场驱动因素和举措
  • 热能存储应用
  • 热能存储市场概述和数据分析
  • 热能存储技术
  • 按技术(千兆瓦时)、地区(千兆瓦时)、应用(千兆瓦时)和价值(十亿美元)划分的 10 年热能存储市场预测。
 
IDTechEx forecasts that the industrial thermal energy storage market will reach US$4.5B by 2034. Heating and cooling accounts for approximately 50% of global energy consumption, with ~30% of this consumption represented by heating demand from industry, with the majority of heat production using fossil fuels. Consequently, ~25% of the global energy pollution comes from heat produced for industrial processes. Therefore, there is growing demand across various industrial sectors for technologies to both generate and store decarbonized heat, such as thermal energy storage (TES).
 
TES systems have been widely adopted for applications such as pairing with concentrated solar power (CSP) plants, district heating, cold chain, and space heating for buildings. However, TES in industry is an emerging and niche market, and is only responsible for ~1% of the global TES market currently. IDTechEx expects that TES systems deployed in industry will form a growing proportion of global TES capacity and will be one of the key solutions needed to reduce global industrial emissions. Government and state-led initiatives such as the EU Innovation Project and the US Department of Energy's Industrial Heat ShotTM are looking to provide funding to companies developing technologies to decarbonize industrial processes, in which TES could be included. Moreover, recently higher natural gas prices in key regions also highlight the need for technologies to provide heat for industrial processes at a potentially lower and more stable cost.
 
The majority of TES technologies are primarily being developed to provide decarbonized heat to industrial processes. This could include sensible-heat technologies using materials such as molten salt, and solid-state media such as concrete and refractory brick, or latent-heat technologies using phase change materials. Different technologies also accept different forms of energy input, including renewable electricity to power electrical resistive heating elements, or excess heat capture (e.g., steam).
 
TES technologies could also be paired with turbine-generators to produce electricity, potentially while co-currently delivering heat. This could see some TES systems be used for long duration energy storage (LDES) applications. As the penetration of variable renewable energy sources, such as solar and wind, increases in national electricity grids, as will the need to manage greater fluctuating supply of energy over longer timeframes. This is where LDES technologies will be useful in dispatching energy over these longer timeframes. Electro-thermal energy storage (ETES) technologies such as those adopting materials such as sand, molten salt, CO2, and water are being developed for larger grid-scale LDES applications. However, conversion of heat to electricity results in efficiency losses, which would be a disadvantage of TES technologies compared to some other LDES technologies. Thermochemical energy storage (TCES) technologies are another type of TES technology and are generally still in prototype stage of development. Greater awareness, funding and material optimization is required to bring these technologies to market.
 
This IDTechEx report analyzes and appraises various TES technologies' commercial readiness for industrial applications, and advantages and disadvantages, including factors such as cost, maximum storage temperature, expected system lifetime, and round-trip efficiency.
 
Thermal energy storage working principles. Source: IDTechEx.
 
TES systems can be used in industry for various process heating applications, including calcination, drying, process fluid heating, and power generation, among more. Some of these processes are used across multiple industrial sectors, which TES players are targeting, such as chemicals, materials manufacturing, refining, food and beverage, pulp and paper, cement, glass, and metal sectors. These processes have requirements related to temperature and type of heat required. For instance, fluid heating processes are typically used in chemical manufacturing and refining processes, such as in distillation reboilers. These processes could see a thermal storage medium, such as molten salt, double up as a heat transfer fluid which, on discharge, passes through a heat exchanger as part of a recirculation loop. 'Medium temperatures' are generally required for such processes, ranging from 200-600°C. Whereas drying processes generally require lower temperatures below 200°C, and are ubiquitous across industrial sectors. These processes will typically require convective heat transfer from hot, dry air. Cooler air could pass through or around a TES medium to be heated and then supplied on discharge to an industrial drying process.
 
However, several metal and glass heat treating and melting processes require much higher temperatures, greater than 1000°C. Many of the TES systems being developed and commercialized are unable to store and supply heat at such temperatures without compromising the mechanical or thermal stability of the thermal storage medium. However, development of novel solid-state materials to withstand higher storage temperatures is being observed, which could promise the use of TES in these higher-temperature processes, which have been some of the most difficult to decarbonize. This IDTechEx report analyzes and examines TES technologies being developed by key players globally and assesses which technologies would be most suitable for different industrial heating applications.
 
Source: IDTechEx
 
As of January 2024, TES players have accumulated over US$600M in funding, to develop and commercialize their technologies, and to increase manufacturing capacity. State-level funding is expected to be an initial key driver across regions, though the proportion of funding attributed to TES versus other industrial decarbonization technologies is not always clear. While a few key GWh-scale non-CSP TES projects are planned for deployment in the US and China, IDTechEx expects most TES player attention is currently focused on the European market. At least 275 MWh of planned cumulative TES capacity is expected to be installed in Europe for industrial applications by 2025. Recently higher natural gas prices and emission caps enforced through the EU Emissions Trading System will be key drivers for European TES growth in industry. This IDTechEx report provides market overviews and data analysis for the industrial TES market, including value chain, strategic partnerships, funding, material suppliers, business models, key player activity, planned and existing projects, and manufacturing developments.
 
Source: IDTechEx.
 
This IDTechEx report also provides 10-year market forecasts on the TES market for the period 2020-2034, in both capacity (GWh) and market value (US$B). Capacity forecasts are provided by region, technology, and application. Regions include Europe, United States, Australia, China, and Rest of the World.
Report MetricsDetails
Historic Data2020 - 2023
CAGRThe CAGR for global annual TES installations for industrial applications for the 2024-2034 period is 75%.
Forecast Period2024 - 2034
Forecast UnitsGWh, US$B
Regions CoveredEurope, United States, Australia, China, Worldwide
Segments CoveredTechnology splits include molten salt, concrete, refractory brick, crushed rock, silicon-based, carbon-based, composite-based, phase change materials (PCMs), electro-thermal / pumped thermal energy storage (ES) and thermochemical ES. Application splits include calcination, drying, bonding/curing, process fluid heating, metal / glass melting, metal / glass heat treating, steam / power generation, LDES, enabling adiabatic CAES / LAES, and seasonal / residential storage.
从 IDTechEx 访问分析师
所有报告购买订单均包括与一名专家分析师进行 30 分钟的电话交谈,专家分析师将帮助您将报告中的重要发现与您正在处理的业务问题联系起来。这需要在购买报告后的三个月内使用。
更多信息
如果您对这一报告有任何疑问,请随时联系我们的报告团队 research@IDTechEx.com 或致电我们的销售经理:

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
ASIA (Korea): +82 10 3896 6219
EUROPE (UK) +44 1223 812300
Table of Contents
1.EXECUTIVE SUMMARY
1.1.Key market conclusions (1)
1.2.Key market conclusions (2)
1.3.Key technology conclusions (1)
1.4.Key technology conclusions (2)
1.5.Thermal energy storage classification and long-term end-use cases
1.6.Thermal energy storage technology working principle
1.7.Summary of regional drivers and initiatives for thermal energy storage
1.8.Thermal energy storage applications map
1.9.Industrial heating processes shared across industries
1.10.Map for TES industrial heating applications by temperature
1.11.TES summary for decarbonizing industrial heating processes
1.12.Thermal energy storage value chain
1.13.Key suppliers and manufacturers for thermal energy storage media and materials
1.14.Thermal energy storage players overview
1.15.Global map of key thermal energy storage player's headquarters
1.16.Global map of thermal energy storage system installations (excluding CSP)
1.17.Funding received by player (US$M)
1.18.Thermal energy storage system manufacturing developments
1.19.Key TES players: Pros and cons
1.20.Existing and planned TES projects by industry / sector end-user
1.21.Cumulative capacity of TES systems by region
1.22.TES technologies by commercial readiness levels (CRL)
1.23.Thermal energy storage CRL and technology benchmarking for industrial applications
1.24.Sensible and latent heat storage media map
1.25.Electro-thermal / pumped thermal energy storage for long duration energy storage applications (1)
1.26.Electro-thermal / pumped thermal energy storage for long duration energy storage applications (2)
1.27.Thermal energy storage advantages and disadvantages
1.28.Thermochemical energy storage summary
1.29.Thermochemical energy storage classification
1.30.Prototypes of thermochemical energy storage systems
1.31.Materials for thermochemical storage outlook and map
1.32.Thermal energy storage annual installations forecast by region (GWh) 2020-2034 with commentary
1.33.Thermal energy storage annual installations forecast by technology (GWh) 2020-2034 with commentary
1.34.Thermal energy storage annual installations forecast by technology segment (GWh) 2020-2034 with commentary
1.35.Thermal energy storage installations forecast by application (GWh) 2020-2034 with commentary
1.36.Thermal energy storage annual installations forecast by value (US$B) 2020-2034 with commentary
2.INTRODUCTION TO THERMAL ENERGY STORAGE
2.1.Introduction to thermal energy storage
2.2.Introduction to thermal energy storage technologies (1)
2.3.Introduction to thermal energy storage technologies (2)
3.REGIONAL MARKET DRIVERS AND INITIATIVES FOR THERMAL ENERGY STORAGE
3.1.Summary of regional drivers and initiatives for thermal energy storage
3.2.TES competing with natural gas: Europe and US
3.3.TES competing with natural gas: Asia-Pacific
3.4.US Department of Energy Industrial Heat ShotTM Initiative
3.5.EU Emissions Trading System
3.6.Policy support for heating and cooling decarbonization in the EU
3.7.EU Innovation Fund for net-zero technologies
3.8.ARENA funding for decarbonization of industrial process heat in Australia
3.9.Japanese Green Innovation Project
3.10.Korea Emissions Trading Scheme and Green New Deal
3.11.China's role in decarbonizing power and industrial sectors
4.THERMAL ENERGY STORAGE APPLICATIONS
4.1.Existing Thermal Energy Storage Applications
4.1.1.Concentrated solar power with thermal energy storage (1)
4.1.2.Concentrated solar power with thermal energy storage (2)
4.1.3.District heating and cooling
4.1.4.Cold chains and buildings
4.2.Thermal Energy Storage Applications to Decarbonize Industrial Heating
4.2.1.Introduction to TES applications for decarbonizing industrial process heating
4.2.2.Industrial heat demand by operation
4.2.3.Industrial heat demand by temperature (1)
4.2.4.Industrial heat demand by temperature (2)
4.2.5.Calcination
4.2.6.Adhesive bonding and curing
4.2.7.Drying
4.2.8.Process fluid heating
4.2.9.Metals and glass heat treating
4.2.10.Melting for metals and glass
4.2.11.Steam and power generation / steam recovery
4.2.12.Industrial heating processes shared across industries
4.2.13.Map for TES industrial heating applications by temperature
4.2.14.TES for decarbonizing industrial heating processes summary table
4.3.Chemical Looping
4.3.1.Summary: Future application of chemical looping for thermal energy storage
4.3.2.Chemical looping combustion (CLC)
4.3.3.Chemical looping hydrogen (CLH) generation
4.3.4.Sorption-enhanced SMR (SE-SMR)
4.3.5.Chemical looping market developments
4.3.6.HyPER Project
4.3.7.ZEG Power
4.3.8.Babcock & Wilcox
4.4.Thermal Energy Storage for Long Duration Energy Storage
4.4.1.Electro-thermal / pumped thermal energy storage for long duration energy storage applications (1)
4.4.2.Electro-thermal / pumped thermal energy storage for long duration energy storage applications (2)
4.4.3.TES as a technology to support adiabatic CAES and LAES systems
4.4.4.CAES systems classification (1)
4.4.5.CAES systems classification (2)
4.4.6.Schematic of adiabatic LAES system with thermal energy storage
4.4.7.Further information on long duration energy storage
5.THERMAL ENERGY STORAGE MARKET OVERVIEW AND DATA ANALYSIS
5.1.TES Installations with Concentrated Solar Power
5.1.1.TES deployments with CSP projects 2008-2023
5.1.2.Capacity of TES (MWh) with installed CSP plants by region
5.1.3.Capacity of TES (MWh) with planned CSP plants by country and project
5.1.4.List of concentrated solar power and thermal energy storage plants: Africa & Middle East
5.1.5.List of concentrated solar power and thermal energy storage plants: China
5.1.6.List of concentrated solar power and thermal energy storage plants: Europe & Americas
5.1.7.List of planned concentrated solar power and thermal energy storage plants
5.2.Industrial Thermal Energy Storage Market
5.2.1.Overview of TES for industrial and non-CSP applications
5.2.2.Thermal energy storage value chain
5.2.3.Strategic partnerships and supplier overview
5.2.4.Key suppliers and manufacturers for thermal energy storage media and materials
5.2.5.Heat as a Product and Heat as a Service
5.2.6.Thermal energy storage players overview
5.2.7.Global map of key thermal energy storage player's headquarters
5.2.8.Global map of thermal energy storage system installations (excluding CSP)
5.2.9.Existing and planned TES projects by industry / sector end-user
5.2.10.TES projects by commercial readiness timeline - prototypes, pilots, demonstrations, commercial-scale
5.2.11.TES technologies by commercial readiness levels (CRL)
5.2.12.Cumulative capacity of TES systems by region
5.2.13.Cumulative capacity of TES Systems by player
5.2.14.Funding received by player (US$M)
5.2.15.Thermal energy storage system manufacturing developments
5.2.16.Key TES players: Pros and cons
5.2.17.Thermal energy storage raw data overview
5.2.18.TES Installations Raw Data Table [Europe]: Capacity (MWh), location, TES technology, scale (commercial, pilot, etc), sector, project details
5.2.19.TES Installations Raw Data Table [United States]: Capacity (MWh), location, TES technology, scale (commercial, pilot, etc), sector, project details
5.2.20.TES Installations Raw Data Table [Australia]: Capacity (MWh), location, TES technology, scale (commercial, pilot, etc), sector, project details
5.2.21.TES Installations Raw Data Table [RoW]: Capacity (MWh), location, TES technology, scale (commercial, pilot, etc), sector, project details
6.THERMAL ENERGY STORAGE TECHNOLOGIES
6.1.Thermal Energy Storage Technologies Summary
6.1.1.Executive summary: Thermal energy storage technologies
6.1.2.Thermal energy storage CRL and technology benchmarking for industrial applications
6.1.3.Thermal energy storage working principles
6.1.4.TES system considerations (1)
6.1.5.TES system considerations (2)
6.1.6.TES system designs to provide heat at constant working parameters
6.1.7.Thermal energy storage applications
6.1.8.Types of thermal storage systems - latent and sensible heat, molten salt vs concrete
6.1.9.Molten salt vs concrete as a thermal storage medium
6.1.10.Sensible and latent heat storage media map
6.2.Thermal Energy Storage Technologies and Players: Sensible and Latent Heat
6.2.1.Key conclusions for sensible and latent heat TES technologies
6.2.2.EnergyNest thermal storage operating principle
6.2.3.EnergyNest ThermalBatteryTM specifications
6.2.4.EnergyNest commercial activity
6.2.5.Brenmiller bGen technology (1)
6.2.6.Brenmiller bGen technology (2)
6.2.7.Brenmiller bGen technology (3)
6.2.8.Brenmiller finances / commercial activity
6.2.9.Brenmiller projects
6.2.10.Azelio technology (1)
6.2.11.Stirling engine working principle
6.2.12.Azelio technology (2)
6.2.13.Azelio projects
6.2.14.Azelio financials, planned projects and bankruptcy
6.2.15.1414 Degrees background and commercialization path
6.2.16.1414 Degrees technology
6.2.17.Kyoto Group background and projects
6.2.18.Kyoto Group technology (1)
6.2.19.Kyoto Group technology (2)
6.2.20.Kraftblock
6.2.21.Antora Energy
6.2.22.Electrified Thermal Solutions market overview
6.2.23.Electrified Thermal Solutions technology
6.2.24.Rondo Energy technology
6.2.25.Rondo Energy commercial activity
6.2.26.Storworks Power
6.2.27.MGA Thermal
6.2.28.MGA Thermal project and manufacturing
6.2.29.Glaciem Cooling Technologies
6.2.30.Thermal energy storage key player activity in China
6.3.Electro-thermal Energy Storage
6.3.1.Electro-thermal energy storage background
6.3.2.Echogen Power Systems
6.3.3.Echogen Power Systems technology
6.3.4.Echogen Power Systems: System costs
6.3.5.Malta Inc
6.3.6.MAN Energy Solutions
6.3.7.Thermal energy storage advantages and disadvantages
6.4.Thermochemical Energy Storage
6.4.1.Executive Summary: Thermochemical energy storage
6.4.2.Introduction to thermochemical energy storage
6.4.3.Thermochemical energy storage classification
6.4.4.Thermochemical adsorption and absorption
6.4.5.Thermochemical sorption energy storage closed salt-water hydration process
6.4.6.Thermochemical sorption energy storage open salt-water hydration process
6.4.7.Thermochemical reaction energy storage (thermochemical energy storage without sorption)
6.4.8.Materials for thermochemical storage overview
6.4.9.Materials for thermochemical storage: Salt hydration
6.4.10.Materials for thermochemical storage: Metal halides and sulfates with ammonia
6.4.11.Materials for thermochemical storage: Metal oxide hydration
6.4.12.Materials for thermochemical storage: Metal oxide carbonation and redox reactions
6.4.13.Materials for thermochemical storage outlook and map
6.4.14.Prototypes of thermochemical energy storage systems
6.4.15.French Polynesia microgrid with hydrogen and cooling from TCES (1)
6.4.16.French Polynesia microgrid with hydrogen and cooling from TCES (2)
6.4.17.SaltX technology
6.4.18.TCSPower Project (chemical reaction energy storage)
6.4.19.Complexities of reactor / system design (1)
6.4.20.Complexities of reactor / system design (2)
6.4.21.Thermochemical energy storage advantages and disadvantages
6.4.22.Thermochemical energy storage conclusions
7.THERMAL ENERGY STORAGE MARKET FORECASTS 2024-2034
7.1.Thermal energy storage forecasts key figures and headlines
7.2.Forecasts methodology and assumptions (1)
7.3.Forecasts methodology and assumptions (2)
7.4.Forecasts methodology and assumptions (3)
7.5.Forecasts methodology and assumptions (4)
7.6.Forecasts methodology and assumptions (5)
7.7.Forecasts methodology and assumptions (6)
7.8.Forecasts methodology and assumptions (7)
7.9.Thermal energy storage annual installations forecast by region (GWh) 2020-2034 with commentary
7.10.Thermal energy storage annual installations forecast by region (GWh) 2020-2034
7.11.Thermal energy storage annual installations by data table by region (GWh) 2020-2034
7.12.Thermal energy storage annual installations forecast by technology (GWh) 2020-2034 with commentary
7.13.Thermal energy storage annual installations forecast by technology (GWh) 2020-2034
7.14.Thermal energy storage annual installations data table by technology (GWh) 2020-2034
7.15.Thermal energy storage annual installations forecast by technology segment (GWh) 2020-2034 with commentary
7.16.Thermal energy storage annual installations data table by technology segment (GWh) 2020-2034
7.17.Thermal energy storage installations forecast by application (GWh) 2020-2034 with commentary
7.18.Thermal energy storage installations forecast by application (GWh) 2020-2034
7.19.Thermal energy storage annual installations data table by application (GWh) 2020-2034
7.20.Thermal energy storage annual installations forecast by value (US$B) 2020-2034 with commentary
7.21.Thermal energy storage annual installations forecast by value (US$B) 2020-2034
7.22.Thermal energy storage annual installations data table by value (US$B) 2020-2034
8.COMPANY PROFILES
8.1.Links to company profiles
 

Ordering Information

2024年-2034年热能储存:技术、参与者、市场和预测

£$¥
电子版(1-5 名用户)
£5,650.00
电子版(6-10 名用户)
£8,050.00
电子版及 1 份硬拷贝文件(1-5 名用户)
£6,450.00
电子版及 1 份硬拷贝文件(6-10 名用户)
£8,850.00
电子版(1-5 名用户)
€6,400.00
电子版(6-10 名用户)
€9,100.00
电子版及 1 份硬拷贝文件(1-5 名用户)
€7,310.00
电子版及 1 份硬拷贝文件(6-10 名用户)
€10,010.00
电子版(1-5 名用户)
$7,000.00
电子版(6-10 名用户)
$10,000.00
电子版及 1 份硬拷贝文件(1-5 名用户)
$7,975.00
电子版及 1 份硬拷贝文件(6-10 名用户)
$10,975.00
电子版(1-5 名用户)
元50,000.00
电子版(6-10 名用户)
元72,000.00
电子版及 1 份硬拷贝文件(1-5 名用户)
元58,000.00
电子版及 1 份硬拷贝文件(6-10 名用户)
元80,000.00
电子版(1-5 名用户)
¥990,000
电子版(6-10 名用户)
¥1,406,000
电子版及 1 份硬拷贝文件(1-5 名用户)
¥1,140,000
电子版及 1 份硬拷贝文件(6-10 名用户)
¥1,556,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。

报告统计信息

幻灯片 231
预测 2034
已发表 Mar 2024
ISBN 9781835700280
 

预览内容

pdf Document Sample pages
 
 
 
 

Subscription Enquiry